DepthPro: Human Segmentation

  • This work is a part of the DepthPro: Beyond Depth Estimation repository, which further explores this model's capabilities on:
    • Image Segmentation - Human Segmentation
    • Image Super Resolution - 384px to 1536px (4x Upscaling)
    • Image Super Resolution - 256px to 1024px (4x Upscaling)

Usage

Install the required libraries:

pip install -q numpy pillow torch torchvision
pip install -q git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers

Import the required libraries:

import requests
from PIL import Image
import torch
from huggingface_hub import hf_hub_download
import matplotlib.pyplot as plt

# custom installation from this PR: https://github.com/huggingface/transformers/pull/34583
# !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation

Load DepthProForDepthEstimation model

# load DepthPro model, used as backbone
config = DepthProConfig(
    patch_size=32,
    patch_embeddings_size=4,
    num_hidden_layers=12,
    intermediate_hook_ids=[11, 8, 7, 5],
    intermediate_feature_dims=[256, 256, 256, 256],
    scaled_images_ratios=[0.5, 1.0],
    scaled_images_overlap_ratios=[0.5, 0.25],
    scaled_images_feature_dims=[1024, 512],
    use_fov_model=False,
)
depthpro_for_depth_estimation = DepthProForDepthEstimation(config)

Create DepthProForSuperResolution model

# create DepthPro for super resolution
class DepthProForSuperResolution(torch.nn.Module):
    def __init__(self, depthpro_for_depth_estimation):
        super().__init__()

        self.depthpro_for_depth_estimation = depthpro_for_depth_estimation
        hidden_size = self.depthpro_for_depth_estimation.config.fusion_hidden_size

        self.image_head = torch.nn.Sequential(
            torch.nn.ConvTranspose2d(
                in_channels=config.num_channels,
                out_channels=hidden_size,
                kernel_size=4, stride=2, padding=1
            ),
            torch.nn.ReLU(),
        )

        self.head = torch.nn.Sequential(
            torch.nn.Conv2d(
                in_channels=hidden_size,
                out_channels=hidden_size,
                kernel_size=3, stride=1, padding=1
            ),
            torch.nn.ReLU(),
            torch.nn.ConvTranspose2d(
                in_channels=hidden_size,
                out_channels=hidden_size,
                kernel_size=4, stride=2, padding=1
            ),
            torch.nn.ReLU(),
            torch.nn.Conv2d(
                in_channels=hidden_size,
                out_channels=self.depthpro_for_depth_estimation.config.num_channels,
                kernel_size=3, stride=1, padding=1
            ),
        )

    def forward(self, pixel_values):
        # x is the low resolution image
        x = pixel_values
        encoder_features = self.depthpro_for_depth_estimation.depth_pro(x).features
        fused_hidden_state = self.depthpro_for_depth_estimation.fusion_stage(encoder_features)[-1]
        x = self.image_head(x)
        x = torch.nn.functional.interpolate(x, size=fused_hidden_state.shape[2:])
        x = x + fused_hidden_state
        x = self.head(x)
        return x

Load the model and image processor:

# initialize the model
model = DepthProForSuperResolution(depthpro_for_depth_estimation)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# load weights
weights_path = hf_hub_download(repo_id="geetu040/DepthPro_SR_4x_256p", filename="model_weights.pth")
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))

# load image processor
image_processor = DepthProImageProcessorFast(
    do_resize=False,
    do_rescale=True,
    do_normalize=True
)

Inference:

# inference

url = "https://huggingface.co/spaces/geetu040/DepthPro_SR_4x_256p/resolve/main/assets/examples/man_with_arms_open.jpeg"

image = Image.open(requests.get(url, stream=True).raw)
image.thumbnail((256, 256)) # resizes the image object to fit within a 256x256 pixel box

# prepare image for the model
inputs = image_processor(images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}

with torch.no_grad():
    outputs = model(**inputs)

# convert tensors to PIL.Image
output = outputs[0]                        # extract the first and only batch
output = output.cpu()                      # unload from cuda if used
output = torch.permute(output, (1, 2, 0))  # (C, H, W) -> (H, W, C)
output = output * 0.5 + 0.5                # undo normalization
output = output * 255.                     # undo scaling
output = output.clip(0, 255.)              # fix out of range
output = output.numpy()                    # convert to numpy
output = output.astype('uint8')            # convert to PIL.Image compatible format
output = Image.fromarray(output)           # create PIL.Image object

# visualize the prediction
fig, axes = plt.subplots(1, 2, figsize=(20, 20))
axes[0].imshow(image)
axes[0].set_title(f'Low-Resolution (LR) {image.size}')
axes[0].axis('off')
axes[1].imshow(output)
axes[1].set_title(f'Super-Resolution (SR) {output.size}')
axes[1].axis('off')
plt.subplots_adjust(wspace=0, hspace=0)
plt.show()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Space using geetu040/DepthPro_SR_4x_256p 1

Collection including geetu040/DepthPro_SR_4x_256p