Version3ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8549
  • Qwk: 0.6178
  • Mse: 0.8549
  • Rmse: 0.9246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 11.0708 0.0166 11.0708 3.3273
No log 2.0 4 9.7417 0.0021 9.7417 3.1212
No log 3.0 6 8.4668 0.0018 8.4668 2.9098
No log 4.0 8 7.4044 0.0018 7.4044 2.7211
No log 5.0 10 6.3359 0.0018 6.3359 2.5171
No log 6.0 12 5.3670 0.0445 5.3670 2.3167
No log 7.0 14 4.5386 0.0156 4.5386 2.1304
No log 8.0 16 3.8757 0.0079 3.8757 1.9687
No log 9.0 18 3.2679 0.0079 3.2679 1.8077
No log 10.0 20 2.7570 0.0040 2.7570 1.6604
No log 11.0 22 2.3487 0.1179 2.3487 1.5326
No log 12.0 24 1.9222 0.0420 1.9222 1.3864
No log 13.0 26 1.6068 0.0420 1.6068 1.2676
No log 14.0 28 1.3849 0.0316 1.3849 1.1768
No log 15.0 30 1.1101 0.0212 1.1101 1.0536
No log 16.0 32 0.9479 0.0316 0.9479 0.9736
No log 17.0 34 0.8513 0.2601 0.8513 0.9226
No log 18.0 36 0.7868 0.2129 0.7868 0.8870
No log 19.0 38 0.6786 0.3549 0.6786 0.8238
No log 20.0 40 0.6848 0.3035 0.6848 0.8275
No log 21.0 42 0.7965 0.2382 0.7965 0.8925
No log 22.0 44 0.6465 0.3852 0.6465 0.8040
No log 23.0 46 0.7439 0.4860 0.7439 0.8625
No log 24.0 48 0.8200 0.4854 0.8200 0.9056
No log 25.0 50 0.6675 0.5974 0.6675 0.8170
No log 26.0 52 0.6893 0.6042 0.6893 0.8302
No log 27.0 54 0.9911 0.5676 0.9911 0.9955
No log 28.0 56 0.6598 0.6383 0.6598 0.8123
No log 29.0 58 0.6187 0.6630 0.6187 0.7866
No log 30.0 60 1.1921 0.5258 1.1921 1.0918
No log 31.0 62 0.5893 0.6772 0.5893 0.7676
No log 32.0 64 0.5806 0.6741 0.5806 0.7620
No log 33.0 66 0.7501 0.6221 0.7501 0.8661
No log 34.0 68 0.6106 0.6467 0.6106 0.7814
No log 35.0 70 1.3755 0.4868 1.3755 1.1728
No log 36.0 72 1.2697 0.5067 1.2697 1.1268
No log 37.0 74 0.6597 0.6431 0.6597 0.8122
No log 38.0 76 1.1212 0.5554 1.1212 1.0589
No log 39.0 78 1.4375 0.5064 1.4375 1.1990
No log 40.0 80 0.6695 0.6444 0.6695 0.8182
No log 41.0 82 0.6508 0.6576 0.6508 0.8067
No log 42.0 84 0.9245 0.6102 0.9245 0.9615
No log 43.0 86 0.6585 0.6304 0.6585 0.8115
No log 44.0 88 0.6926 0.6365 0.6926 0.8322
No log 45.0 90 0.8620 0.6192 0.8620 0.9284
No log 46.0 92 0.7562 0.6279 0.7562 0.8696
No log 47.0 94 1.1786 0.5620 1.1786 1.0856
No log 48.0 96 1.1252 0.5623 1.1252 1.0607
No log 49.0 98 0.6571 0.6388 0.6571 0.8106
No log 50.0 100 0.6293 0.6533 0.6293 0.7933
No log 51.0 102 0.8549 0.6178 0.8549 0.9246

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for genki10/Version3ASAP_FineTuningBERT_AugV12_k5_task1_organization_k5_k5_fold4

Finetuned
(2999)
this model