Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6616
  • Qwk: 0.5976
  • Mse: 0.6616
  • Rmse: 0.8134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 12.5206 0.0043 12.5194 3.5383
No log 2.0 2 10.1092 0.0065 10.1073 3.1792
No log 3.0 3 8.7336 0.0018 8.7318 2.9550
No log 4.0 4 7.2796 0.0018 7.2780 2.6978
No log 5.0 5 6.6110 0.0 6.6098 2.5710
No log 6.0 6 6.2344 -0.0062 6.2333 2.4967
No log 7.0 7 5.4486 0.0146 5.4475 2.3340
No log 8.0 8 4.6512 0.0038 4.6501 2.1564
No log 9.0 9 4.2589 0.0 4.2577 2.0634
No log 10.0 10 3.9553 0.0 3.9541 1.9885
No log 11.0 11 3.6181 0.0 3.6170 1.9018
No log 12.0 12 3.3234 0.0 3.3224 1.8227
No log 13.0 13 3.1030 0.0 3.1021 1.7613
No log 14.0 14 2.7762 0.0 2.7753 1.6659
No log 15.0 15 2.4382 0.1494 2.4373 1.5612
No log 16.0 16 2.1974 0.0452 2.1965 1.4821
No log 17.0 17 1.9284 0.0166 1.9275 1.3884
No log 18.0 18 1.6714 0.0102 1.6707 1.2925
No log 19.0 19 1.4427 0.0202 1.4421 1.2009
No log 20.0 20 1.2938 0.0202 1.2933 1.1372
No log 21.0 21 1.1687 0.0102 1.1682 1.0808
No log 22.0 22 1.1656 0.0102 1.1650 1.0794
No log 23.0 23 1.0645 0.0102 1.0640 1.0315
No log 24.0 24 0.9171 0.1636 0.9167 0.9575
No log 25.0 25 0.9547 0.2235 0.9544 0.9770
No log 26.0 26 0.8714 0.2544 0.8711 0.9333
No log 27.0 27 0.7828 0.3299 0.7825 0.8846
No log 28.0 28 0.7778 0.2534 0.7775 0.8817
No log 29.0 29 0.7499 0.2534 0.7496 0.8658
No log 30.0 30 0.6889 0.3335 0.6888 0.8299
No log 31.0 31 0.6533 0.3763 0.6534 0.8083
No log 32.0 32 0.6632 0.3334 0.6632 0.8144
No log 33.0 33 0.6900 0.3227 0.6901 0.8307
No log 34.0 34 0.6427 0.3627 0.6429 0.8018
No log 35.0 35 0.5639 0.4564 0.5641 0.7511
No log 36.0 36 0.5618 0.4928 0.5620 0.7497
No log 37.0 37 0.5416 0.4697 0.5418 0.7361
No log 38.0 38 0.6341 0.4388 0.6344 0.7965
No log 39.0 39 0.6703 0.4520 0.6706 0.8189
No log 40.0 40 0.6193 0.5587 0.6195 0.7871
No log 41.0 41 0.5207 0.5990 0.5209 0.7217
No log 42.0 42 0.5233 0.6131 0.5235 0.7235
No log 43.0 43 0.5282 0.6026 0.5285 0.7269
No log 44.0 44 0.5749 0.5796 0.5750 0.7583
No log 45.0 45 0.5573 0.5790 0.5575 0.7467
No log 46.0 46 0.5316 0.6287 0.5318 0.7292
No log 47.0 47 0.5377 0.6373 0.5379 0.7334
No log 48.0 48 0.5682 0.6257 0.5684 0.7539
No log 49.0 49 0.6202 0.5975 0.6204 0.7876
No log 50.0 50 0.5972 0.5998 0.5974 0.7729
No log 51.0 51 0.5694 0.6174 0.5695 0.7547
No log 52.0 52 0.5791 0.6165 0.5793 0.7611
No log 53.0 53 0.6258 0.5970 0.6259 0.7911
No log 54.0 54 0.5934 0.6079 0.5935 0.7704
No log 55.0 55 0.5530 0.6210 0.5531 0.7437
No log 56.0 56 0.5592 0.6073 0.5594 0.7479
No log 57.0 57 0.6072 0.6013 0.6073 0.7793
No log 58.0 58 0.6745 0.5924 0.6745 0.8213
No log 59.0 59 0.6736 0.5995 0.6737 0.8208
No log 60.0 60 0.6890 0.5982 0.6890 0.8301
No log 61.0 61 0.6258 0.6130 0.6258 0.7911
No log 62.0 62 0.5782 0.6227 0.5783 0.7605
No log 63.0 63 0.5510 0.6025 0.5511 0.7424
No log 64.0 64 0.5819 0.6174 0.5820 0.7629
No log 65.0 65 0.7051 0.5794 0.7050 0.8397
No log 66.0 66 0.7408 0.5637 0.7407 0.8606
No log 67.0 67 0.6616 0.5976 0.6616 0.8134

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold3

Finetuned
(3000)
this model