Version_weird_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6611
  • Qwk: 0.6138
  • Mse: 0.6604
  • Rmse: 0.8126

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 11.7479 0.0249 11.7465 3.4273
No log 2.0 2 9.9811 0.0152 9.9800 3.1591
No log 3.0 3 8.4914 0.0018 8.4903 2.9138
No log 4.0 4 7.2570 0.0 7.2560 2.6937
No log 5.0 5 6.2626 0.0318 6.2618 2.5024
No log 6.0 6 5.6087 0.0331 5.6077 2.3681
No log 7.0 7 4.9755 0.0182 4.9748 2.2304
No log 8.0 8 4.3589 0.0059 4.3583 2.0876
No log 9.0 9 3.6190 0.0038 3.6183 1.9022
No log 10.0 10 3.0759 0.0 3.0751 1.7536
No log 11.0 11 2.6719 0.0096 2.6711 1.6343
No log 12.0 12 2.3323 0.1654 2.3316 1.5269
No log 13.0 13 2.1456 0.0890 2.1450 1.4646
No log 14.0 14 1.8946 0.0601 1.8940 1.3762
No log 15.0 15 1.6317 0.0488 1.6312 1.2772
No log 16.0 16 1.4064 0.0365 1.4059 1.1857
No log 17.0 17 1.2386 0.0365 1.2381 1.1127
No log 18.0 18 1.1194 0.0302 1.1189 1.0578
No log 19.0 19 1.0341 0.0302 1.0337 1.0167
No log 20.0 20 0.9471 0.0428 0.9467 0.9730
No log 21.0 21 0.8839 0.3368 0.8835 0.9399
No log 22.0 22 0.8108 0.3636 0.8104 0.9002
No log 23.0 23 0.7664 0.3136 0.7660 0.8752
No log 24.0 24 0.7416 0.2950 0.7412 0.8610
No log 25.0 25 0.7317 0.2768 0.7314 0.8552
No log 26.0 26 0.7200 0.2656 0.7197 0.8484
No log 27.0 27 0.7215 0.2642 0.7213 0.8493
No log 28.0 28 0.6982 0.2897 0.6980 0.8355
No log 29.0 29 0.6491 0.3114 0.6489 0.8055
No log 30.0 30 0.6518 0.3239 0.6516 0.8072
No log 31.0 31 0.6719 0.3276 0.6718 0.8196
No log 32.0 32 0.6649 0.3470 0.6648 0.8153
No log 33.0 33 0.5717 0.4422 0.5716 0.7560
No log 34.0 34 0.5669 0.5133 0.5668 0.7529
No log 35.0 35 0.5691 0.5806 0.5689 0.7542
No log 36.0 36 0.6201 0.5746 0.6199 0.7873
No log 37.0 37 0.5690 0.6135 0.5687 0.7541
No log 38.0 38 0.5023 0.6410 0.5020 0.7085
No log 39.0 39 0.5129 0.6505 0.5125 0.7159
No log 40.0 40 0.5603 0.6339 0.5599 0.7483
No log 41.0 41 0.5966 0.6279 0.5962 0.7722
No log 42.0 42 0.5802 0.6434 0.5798 0.7614
No log 43.0 43 0.5758 0.6447 0.5754 0.7585
No log 44.0 44 0.6264 0.6325 0.6259 0.7912
No log 45.0 45 0.7352 0.5951 0.7347 0.8571
No log 46.0 46 0.6963 0.6158 0.6957 0.8341
No log 47.0 47 0.6111 0.6287 0.6106 0.7814
No log 48.0 48 0.6169 0.6265 0.6163 0.7851
No log 49.0 49 0.6527 0.6104 0.6521 0.8075
No log 50.0 50 0.7616 0.6190 0.7610 0.8723
No log 51.0 51 0.7831 0.6156 0.7825 0.8846
No log 52.0 52 0.7063 0.6025 0.7056 0.8400
No log 53.0 53 0.6635 0.6121 0.6628 0.8141
No log 54.0 54 0.6600 0.6196 0.6592 0.8119
No log 55.0 55 0.7028 0.6208 0.7020 0.8379
No log 56.0 56 0.7564 0.6288 0.7556 0.8692
No log 57.0 57 0.8193 0.6104 0.8185 0.9047
No log 58.0 58 0.7167 0.6204 0.7159 0.8461
No log 59.0 59 0.6611 0.6138 0.6604 0.8126

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold3

Finetuned
(2999)
this model