Version_weird_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9160
- Qwk: 0.5845
- Mse: 0.9159
- Rmse: 0.9571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 1 | 8.2939 | 0.0037 | 8.2939 | 2.8799 |
No log | 2.0 | 2 | 7.3961 | 0.0018 | 7.3961 | 2.7196 |
No log | 3.0 | 3 | 6.8615 | 0.0018 | 6.8615 | 2.6194 |
No log | 4.0 | 4 | 6.3513 | 0.0018 | 6.3513 | 2.5202 |
No log | 5.0 | 5 | 5.8530 | 0.0266 | 5.8530 | 2.4193 |
No log | 6.0 | 6 | 5.3950 | 0.0080 | 5.3950 | 2.3227 |
No log | 7.0 | 7 | 4.9554 | 0.0079 | 4.9554 | 2.2261 |
No log | 8.0 | 8 | 4.5116 | 0.0040 | 4.5116 | 2.1241 |
No log | 9.0 | 9 | 4.0895 | 0.0040 | 4.0895 | 2.0222 |
No log | 10.0 | 10 | 3.6898 | 0.0040 | 3.6898 | 1.9209 |
No log | 11.0 | 11 | 3.2580 | 0.0040 | 3.2580 | 1.8050 |
No log | 12.0 | 12 | 2.8290 | 0.0040 | 2.8290 | 1.6820 |
No log | 13.0 | 13 | 2.4312 | 0.0302 | 2.4312 | 1.5592 |
No log | 14.0 | 14 | 2.1171 | 0.1175 | 2.1171 | 1.4550 |
No log | 15.0 | 15 | 1.8482 | 0.0408 | 1.8482 | 1.3595 |
No log | 16.0 | 16 | 1.6343 | 0.0213 | 1.6343 | 1.2784 |
No log | 17.0 | 17 | 1.4628 | 0.0213 | 1.4628 | 1.2095 |
No log | 18.0 | 18 | 1.3264 | 0.0213 | 1.3264 | 1.1517 |
No log | 19.0 | 19 | 1.2150 | 0.0213 | 1.2150 | 1.1023 |
No log | 20.0 | 20 | 1.1067 | 0.0213 | 1.1067 | 1.0520 |
No log | 21.0 | 21 | 1.0178 | 0.0213 | 1.0178 | 1.0088 |
No log | 22.0 | 22 | 0.9329 | 0.0213 | 0.9329 | 0.9658 |
No log | 23.0 | 23 | 0.8707 | 0.1669 | 0.8707 | 0.9331 |
No log | 24.0 | 24 | 0.8241 | 0.3771 | 0.8241 | 0.9078 |
No log | 25.0 | 25 | 0.7743 | 0.3308 | 0.7743 | 0.8800 |
No log | 26.0 | 26 | 0.7496 | 0.2912 | 0.7496 | 0.8658 |
No log | 27.0 | 27 | 0.7113 | 0.3251 | 0.7113 | 0.8434 |
No log | 28.0 | 28 | 0.6801 | 0.3540 | 0.6801 | 0.8247 |
No log | 29.0 | 29 | 0.6643 | 0.3466 | 0.6643 | 0.8151 |
No log | 30.0 | 30 | 0.6584 | 0.3438 | 0.6584 | 0.8114 |
No log | 31.0 | 31 | 0.6199 | 0.3811 | 0.6199 | 0.7873 |
No log | 32.0 | 32 | 0.6020 | 0.4105 | 0.6020 | 0.7759 |
No log | 33.0 | 33 | 0.5844 | 0.4567 | 0.5844 | 0.7645 |
No log | 34.0 | 34 | 0.5723 | 0.4706 | 0.5723 | 0.7565 |
No log | 35.0 | 35 | 0.5670 | 0.4910 | 0.5670 | 0.7530 |
No log | 36.0 | 36 | 0.5592 | 0.5117 | 0.5592 | 0.7478 |
No log | 37.0 | 37 | 0.5568 | 0.5520 | 0.5568 | 0.7462 |
No log | 38.0 | 38 | 0.5616 | 0.6050 | 0.5616 | 0.7494 |
No log | 39.0 | 39 | 0.5621 | 0.6059 | 0.5621 | 0.7498 |
No log | 40.0 | 40 | 0.5688 | 0.6337 | 0.5688 | 0.7542 |
No log | 41.0 | 41 | 0.5874 | 0.6159 | 0.5874 | 0.7664 |
No log | 42.0 | 42 | 0.5995 | 0.6326 | 0.5995 | 0.7743 |
No log | 43.0 | 43 | 0.5999 | 0.6455 | 0.5999 | 0.7745 |
No log | 44.0 | 44 | 0.6353 | 0.6201 | 0.6353 | 0.7971 |
No log | 45.0 | 45 | 0.6205 | 0.6525 | 0.6205 | 0.7877 |
No log | 46.0 | 46 | 0.6312 | 0.6394 | 0.6312 | 0.7945 |
No log | 47.0 | 47 | 0.6711 | 0.6308 | 0.6711 | 0.8192 |
No log | 48.0 | 48 | 0.6903 | 0.6191 | 0.6903 | 0.8309 |
No log | 49.0 | 49 | 0.6519 | 0.6436 | 0.6519 | 0.8074 |
No log | 50.0 | 50 | 0.6756 | 0.6215 | 0.6756 | 0.8220 |
No log | 51.0 | 51 | 0.9182 | 0.5861 | 0.9182 | 0.9582 |
No log | 52.0 | 52 | 0.9408 | 0.5861 | 0.9408 | 0.9700 |
No log | 53.0 | 53 | 0.7383 | 0.6174 | 0.7383 | 0.8592 |
No log | 54.0 | 54 | 0.6588 | 0.6397 | 0.6588 | 0.8117 |
No log | 55.0 | 55 | 0.6544 | 0.6428 | 0.6544 | 0.8089 |
No log | 56.0 | 56 | 0.7192 | 0.6270 | 0.7192 | 0.8480 |
No log | 57.0 | 57 | 1.0600 | 0.5473 | 1.0600 | 1.0296 |
No log | 58.0 | 58 | 1.1876 | 0.5203 | 1.1876 | 1.0898 |
No log | 59.0 | 59 | 1.0262 | 0.5594 | 1.0262 | 1.0130 |
No log | 60.0 | 60 | 0.7374 | 0.6178 | 0.7374 | 0.8587 |
No log | 61.0 | 61 | 0.6633 | 0.6467 | 0.6633 | 0.8144 |
No log | 62.0 | 62 | 0.6889 | 0.6387 | 0.6889 | 0.8300 |
No log | 63.0 | 63 | 0.7196 | 0.6413 | 0.7196 | 0.8483 |
No log | 64.0 | 64 | 0.8457 | 0.6052 | 0.8457 | 0.9196 |
No log | 65.0 | 65 | 0.9160 | 0.5845 | 0.9159 | 0.9571 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold4
Base model
google-bert/bert-base-uncased