Version_weird_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9160
  • Qwk: 0.5845
  • Mse: 0.9159
  • Rmse: 0.9571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 8.2939 0.0037 8.2939 2.8799
No log 2.0 2 7.3961 0.0018 7.3961 2.7196
No log 3.0 3 6.8615 0.0018 6.8615 2.6194
No log 4.0 4 6.3513 0.0018 6.3513 2.5202
No log 5.0 5 5.8530 0.0266 5.8530 2.4193
No log 6.0 6 5.3950 0.0080 5.3950 2.3227
No log 7.0 7 4.9554 0.0079 4.9554 2.2261
No log 8.0 8 4.5116 0.0040 4.5116 2.1241
No log 9.0 9 4.0895 0.0040 4.0895 2.0222
No log 10.0 10 3.6898 0.0040 3.6898 1.9209
No log 11.0 11 3.2580 0.0040 3.2580 1.8050
No log 12.0 12 2.8290 0.0040 2.8290 1.6820
No log 13.0 13 2.4312 0.0302 2.4312 1.5592
No log 14.0 14 2.1171 0.1175 2.1171 1.4550
No log 15.0 15 1.8482 0.0408 1.8482 1.3595
No log 16.0 16 1.6343 0.0213 1.6343 1.2784
No log 17.0 17 1.4628 0.0213 1.4628 1.2095
No log 18.0 18 1.3264 0.0213 1.3264 1.1517
No log 19.0 19 1.2150 0.0213 1.2150 1.1023
No log 20.0 20 1.1067 0.0213 1.1067 1.0520
No log 21.0 21 1.0178 0.0213 1.0178 1.0088
No log 22.0 22 0.9329 0.0213 0.9329 0.9658
No log 23.0 23 0.8707 0.1669 0.8707 0.9331
No log 24.0 24 0.8241 0.3771 0.8241 0.9078
No log 25.0 25 0.7743 0.3308 0.7743 0.8800
No log 26.0 26 0.7496 0.2912 0.7496 0.8658
No log 27.0 27 0.7113 0.3251 0.7113 0.8434
No log 28.0 28 0.6801 0.3540 0.6801 0.8247
No log 29.0 29 0.6643 0.3466 0.6643 0.8151
No log 30.0 30 0.6584 0.3438 0.6584 0.8114
No log 31.0 31 0.6199 0.3811 0.6199 0.7873
No log 32.0 32 0.6020 0.4105 0.6020 0.7759
No log 33.0 33 0.5844 0.4567 0.5844 0.7645
No log 34.0 34 0.5723 0.4706 0.5723 0.7565
No log 35.0 35 0.5670 0.4910 0.5670 0.7530
No log 36.0 36 0.5592 0.5117 0.5592 0.7478
No log 37.0 37 0.5568 0.5520 0.5568 0.7462
No log 38.0 38 0.5616 0.6050 0.5616 0.7494
No log 39.0 39 0.5621 0.6059 0.5621 0.7498
No log 40.0 40 0.5688 0.6337 0.5688 0.7542
No log 41.0 41 0.5874 0.6159 0.5874 0.7664
No log 42.0 42 0.5995 0.6326 0.5995 0.7743
No log 43.0 43 0.5999 0.6455 0.5999 0.7745
No log 44.0 44 0.6353 0.6201 0.6353 0.7971
No log 45.0 45 0.6205 0.6525 0.6205 0.7877
No log 46.0 46 0.6312 0.6394 0.6312 0.7945
No log 47.0 47 0.6711 0.6308 0.6711 0.8192
No log 48.0 48 0.6903 0.6191 0.6903 0.8309
No log 49.0 49 0.6519 0.6436 0.6519 0.8074
No log 50.0 50 0.6756 0.6215 0.6756 0.8220
No log 51.0 51 0.9182 0.5861 0.9182 0.9582
No log 52.0 52 0.9408 0.5861 0.9408 0.9700
No log 53.0 53 0.7383 0.6174 0.7383 0.8592
No log 54.0 54 0.6588 0.6397 0.6588 0.8117
No log 55.0 55 0.6544 0.6428 0.6544 0.8089
No log 56.0 56 0.7192 0.6270 0.7192 0.8480
No log 57.0 57 1.0600 0.5473 1.0600 1.0296
No log 58.0 58 1.1876 0.5203 1.1876 1.0898
No log 59.0 59 1.0262 0.5594 1.0262 1.0130
No log 60.0 60 0.7374 0.6178 0.7374 0.8587
No log 61.0 61 0.6633 0.6467 0.6633 0.8144
No log 62.0 62 0.6889 0.6387 0.6889 0.8300
No log 63.0 63 0.7196 0.6413 0.7196 0.8483
No log 64.0 64 0.8457 0.6052 0.8457 0.9196
No log 65.0 65 0.9160 0.5845 0.9159 0.9571

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k3_task1_organization_k3_k3_fold4

Finetuned
(2999)
this model