Built with Axolotl

See axolotl config

axolotl version: 0.10.0

base_model: mistralai/Ministral-8B-Instruct-2410
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
bnb_4bit_use_double_quant: false
bnb_4bit_quant_type: null
bnb_4bit_compute_dtype: null
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
- path: /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl
  type:
    system_prompt: ''
    field_system: system
    field_instruction: context
    field_output: target
    format: '[INST] {instruction} [/INST]'
    no_input_format: '[INST] {instruction} [/INST]'
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/sentiment_mistral_8b_8bits_r8
peft_use_dora: false
peft_use_rslora: false
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: sentiment_mistral_8b_8bits_r8
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>

workspace/FinLoRA/lora/axolotl-output/sentiment_mistral_8b_8bits_r8

This model is a fine-tuned version of mistralai/Ministral-8B-Instruct-2410 on the /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2546

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 4461

Training results

Training Loss Epoch Step Validation Loss
No log 0 0 1.2940
No log 0.2501 279 0.2580
0.2139 0.5002 558 0.2489
0.2139 0.7503 837 0.2483
0.1302 1.0 1116 0.2467
0.1302 1.2501 1395 0.2496
0.1022 1.5002 1674 0.2464
0.1022 1.7503 1953 0.2426
0.0953 2.0 2232 0.2412
0.0806 2.2501 2511 0.2506
0.0806 2.5002 2790 0.2422
0.0759 2.7503 3069 0.2443
0.0759 3.0 3348 0.2425
0.07 3.2501 3627 0.2573
0.07 3.5002 3906 0.2546
0.0595 3.7503 4185 0.2546

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.8.0.dev20250319+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ghostof0days/sentiment_ministral_8b_8bits_r8

Adapter
(79)
this model