deberta-v3-base
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1028
- Accuracy: 0.9667
- Precision: 0.9672
- Recall: 0.9667
- F1: 0.9667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3225 | 0.9895 | 59 | 0.3013 | 0.9083 | 0.9135 | 0.9083 | 0.9077 |
0.126 | 1.9958 | 119 | 0.2186 | 0.9167 | 0.9188 | 0.9167 | 0.9167 |
0.0296 | 2.9853 | 178 | 0.1028 | 0.9667 | 0.9672 | 0.9667 | 0.9667 |
0.0564 | 3.9916 | 238 | 0.1482 | 0.975 | 0.9751 | 0.975 | 0.9750 |
0.0755 | 4.9979 | 298 | 0.1509 | 0.95 | 0.9506 | 0.95 | 0.9500 |
0.0015 | 5.9874 | 357 | 0.1600 | 0.9667 | 0.9667 | 0.9667 | 0.9667 |
0.0086 | 6.9937 | 417 | 0.2844 | 0.9417 | 0.9475 | 0.9417 | 0.9413 |
0.0011 | 8.0 | 477 | 0.1715 | 0.9667 | 0.9667 | 0.9667 | 0.9667 |
0.0009 | 8.9895 | 536 | 0.1922 | 0.9667 | 0.9667 | 0.9667 | 0.9667 |
0.001 | 9.8952 | 590 | 0.1981 | 0.9667 | 0.9667 | 0.9667 | 0.9667 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
- Downloads last month
- 110
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gnurt2041/deberta-v3-base-tuned
Base model
microsoft/deberta-v3-base