gokulsrinivasagan's picture
End of training
e5569e2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base.en
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: whisper-base.en-speech-commands-v1
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: None
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8066546762589928

whisper-base.en-speech-commands-v1

This model is a fine-tuned version of openai/whisper-base.en on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1638
  • Accuracy: 0.8067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 384
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3306 1.0 103 1.1388 0.8022
0.1314 2.0 206 1.1511 0.8022
0.0672 3.0 309 1.1448 0.8062
0.048 4.0 412 1.1638 0.8067
0.034 5.0 515 1.1655 0.8058

Framework versions

  • Transformers 4.51.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1