gokulsrinivasagan's picture
End of training
6865a9d verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: whisper-tiny.en-speech-commands-v1-t_80
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: None
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8039568345323741

whisper-tiny.en-speech-commands-v1-t_80

This model is a fine-tuned version of openai/whisper-tiny.en on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1111
  • Accuracy: 0.8040

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 192
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2619 1.0 206 1.2037 0.7945
0.1186 2.0 412 1.1056 0.8026
0.0594 3.0 618 1.1111 0.8040

Framework versions

  • Transformers 4.51.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1