document-spoof-clip / README.md
habibi26's picture
Model save
f163b30 verified
|
raw
history blame
2.81 kB
metadata
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: document-spoof-clip
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9428571428571428

document-spoof-clip

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2587
  • Accuracy: 0.9429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8421 4 0.2112 0.9571
No log 1.8947 9 0.1227 0.9857
0.295 2.9474 14 0.1203 0.9571
0.295 4.0 19 0.0635 0.9714
0.0962 4.8421 23 0.2939 0.9429
0.0962 5.8947 28 0.2483 0.9286
0.163 6.9474 33 0.0712 0.9857
0.163 8.0 38 0.0474 0.9714
0.0646 8.8421 42 0.2012 0.9429
0.0646 9.8947 47 0.3587 0.9
0.1048 10.9474 52 0.0427 0.9857
0.1048 12.0 57 0.0149 0.9857
0.0519 12.8421 61 0.1616 0.9571
0.0519 13.8947 66 0.2286 0.9571
0.0151 14.9474 71 0.1369 0.9571
0.0151 16.0 76 0.2154 0.9571
0.0455 16.8421 80 0.2587 0.9429

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1