scratch_adamw_phase_1

This model is a fine-tuned version of HuggingFaceTB/SmolLM2-360M on the kajuma/training_01-09_patch dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1315

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 11000

Training results

Training Loss Epoch Step Validation Loss
1.4162 0.0439 500 1.4265
1.3632 0.0878 1000 1.3825
1.3563 0.1317 1500 1.3339
1.2638 0.1755 2000 1.3033
1.2974 0.2194 2500 1.2802
1.3333 0.2633 3000 1.2623
1.254 0.3072 3500 1.2466
1.2591 0.3511 4000 1.2318
1.2091 0.3950 4500 1.2186
1.2803 0.4388 5000 1.2060
1.222 0.4827 5500 1.1942
1.2236 0.5266 6000 1.1826
1.1148 0.5705 6500 1.1723
1.2086 0.6144 7000 1.1626
1.1524 0.6583 7500 1.1542
1.1177 0.7022 8000 1.1471
1.1894 0.7460 8500 1.1417
1.1384 0.7899 9000 1.1379
1.1379 0.8338 9500 1.1350
1.1464 0.8777 10000 1.1333
1.1579 0.9216 10500 1.1322
1.144 0.9655 11000 1.1315

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
20
Safetensors
Model size
362M params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for halcyon-llm/SmolLM2-360M-japanese_base_phase_1-11000

Finetuned
(31)
this model
Finetunes
1 model

Dataset used to train halcyon-llm/SmolLM2-360M-japanese_base_phase_1-11000

Collection including halcyon-llm/SmolLM2-360M-japanese_base_phase_1-11000