library_name: mlx
pipeline_tag: text-generation
inference: false
license: apache-2.0
base_model: openai/gpt-oss-20b
base_model_relation: quantized
language:
- en
- ro
tags:
- apple-silicon
- metal
- arm64
- 5-bit
- group-size-32
- moe
- mpx4
- openai
- halley-ai
gpt-oss-20b — MLX 5-bit (group size 32)
Summary. This is a 5-bit (Q5) MLX quantization of gpt-oss-20B (sparse Mixture-of-Experts, MPx4). Group size is 32.
Built for Apple Silicon with Metal acceleration.
- Base model:
openai/gpt-oss-20b
(Apache-2.0) - Quantization: MLX Q5,
q_group_size=32
(some tensors remain FP16 for stability) - Files: MLX weight shards +
config.json
; tokenizer files included for drop-in use - Footprint: ~15.76 GB on disk
- Intended use: local inference / research on M-series Macs
- Not intended for: safety-critical decisions; outputs may be inaccurate or biased
Requirements
Runs on: Apple Silicon (M1 or newer) with macOS ≥ 13.5 via MLX (Metal).
Not supported: Intel macOS / Linux / Windows (use a GGUF build + llama.cpp instead).
RAM guidance: 24 GB minimum for Q5 gs=32. Extra RAM improves headroom.
How to use (MLX)
pip install mlx-lm transformers
# Python API (uses tokenizer bundled with this repo)
from mlx_lm import load, generate
model, tokenizer = load("halley-ai/gpt-oss-20b-MLX-5bit-gs32")
print(generate(
model, tokenizer,
prompt="Explain the Chudnovsky algorithm to compute π.",
max_tokens=256, max_kv_size=512
))
# CLI
python -m mlx_lm generate --model halley-ai/gpt-oss-20b-MLX-5bit-gs32 \
--prompt "Explain the Chudnovsky algorithm to compute pi." \
--max-kv-size 512 --max-tokens 256
Performance (Apple Silicon, real-world)
LM Studio / CLI (MLX, Q5 gs=32) ≈2k-token responses:
- M1 Max (32 GB): ~45–50 tok/s, 0.40–0.60 s TTFB
- M4 Pro (24 GB): ~65–70 tok/s, 0.25–0.45 s TTFB
- M3 Ultra (256 GB): pending
Throughput varies with Mac model, context, and sampler settings.
Evaluation
Perplexity (PPL) streaming evaluation on WikiText-2; window=stride=4096, ~100k tokens, EOS inserted between docs.
Variant | PPL (ctx=4096) |
---|---|
MLX 8-bit (reference) | 10.75 |
MLX 6-bit (gs=32) | 10.46 (−2.7% vs 8-bit/gs64) |
MLX 5-bit (gs=32) | 11.11 (+3.3% vs 8-bit/gs64, +6.2% vs 6-bit/gs32) |
MLX 4-bit (gs=32) | 13.70 (+27.4% vs 8-bit/gs64, +31.0% vs 6-bit/gs32) |
Interpretation
- MLX 6-bit/gs32: Best of the group; edges out 8-bit/gs64 slightly at a smaller footprint.
- MLX 5-bit/gs32: Small, consistent drop vs 6-bit/gs32 and 8-bit/gs64 (~3–6% PPL); strong “fits-16GB” option when GPU buffer limits matter.
- MLX 8-bit/gs64: Solid reference; near‑FP16 quality at a larger footprint.
- MLX 4-bit/gs32: Trades accuracy for footprint; use when RAM is constrained or throughput is the priority.
Conversion details (provenance)
python -m mlx_lm convert \
--hf-path openai/gpt-oss-20b \
--mlx-path gpt-oss-20b-mlx-q5-gs32 \
--q-bits 5 --q-group-size 32 -q
- Some non-expert tensors (embeddings, norms, router) remain FP16.
Sibling & reference models
- halley-ai/gpt-oss-20b-MLX-6bit-gs32
- halley-ai/gpt-oss-20b-MLX-4bit-gs32
- Reference (8-bit, upstream): lmstudio-community/gpt-oss-20b-MLX-8bit
Limitations & biases
Outputs may be factually wrong or unsafe. Don’t use for medical, legal, or financial decisions without human review. MoE models can be sensitive to prompt wording; prefer explicit instructions and structure.
License & credits
- License: Apache-2.0 (inherits from base model)
- Base model: OpenAI gpt-oss-20B
- Quantization: Halley AI Lab (MLX Q5, gs=32)
- Please cite both the base model and this repository when you use the weights.