scenario-TCR-XLMV-4_data-AmazonScience_massive_all_1_1

This model is a fine-tuned version of facebook/xlm-v-base on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8322
  • Accuracy: 0.8462
  • F1: 0.8244

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 777
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.595 0.27 5000 0.7040 0.8241 0.7720
0.4654 0.53 10000 0.6468 0.8410 0.8027
0.3838 0.8 15000 0.6802 0.8399 0.7994
0.2831 1.07 20000 0.7290 0.8471 0.8206
0.274 1.34 25000 0.7192 0.8471 0.8141
0.2598 1.6 30000 0.7145 0.8440 0.8215
0.2501 1.87 35000 0.7347 0.8500 0.8245
0.2022 2.14 40000 0.7809 0.8503 0.8223
0.2164 2.41 45000 0.7481 0.8533 0.8280
0.2008 2.67 50000 0.7684 0.8467 0.8252
0.2015 2.94 55000 0.8170 0.8422 0.8160
0.1716 3.21 60000 0.8603 0.8433 0.8186
0.1643 3.47 65000 0.8221 0.8514 0.8279
0.1816 3.74 70000 0.8322 0.8462 0.8244

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
94
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for haryoaw/scenario-TCR-XLMV-4_data-AmazonScience_massive_all_1_1

Finetuned
(41)
this model

Evaluation results