|
--- |
|
license: mit |
|
base_model: facebook/xlm-v-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- massive |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: scenario-TCR-XLMV_data-AmazonScience_massive_all_1_1_gamma2 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: massive |
|
type: massive |
|
config: all_1.1 |
|
split: validation |
|
args: all_1.1 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8497862196829241 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8128154197258449 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-TCR-XLMV_data-AmazonScience_massive_all_1_1_gamma2 |
|
|
|
This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7609 |
|
- Accuracy: 0.8498 |
|
- F1: 0.8128 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 77 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 0.6302 | 0.27 | 5000 | 0.7304 | 0.8189 | 0.7638 | |
|
| 0.4558 | 0.53 | 10000 | 0.6614 | 0.8412 | 0.7995 | |
|
| 0.3573 | 0.8 | 15000 | 0.6639 | 0.8461 | 0.8146 | |
|
| 0.2797 | 1.07 | 20000 | 0.7008 | 0.8485 | 0.8198 | |
|
| 0.2779 | 1.34 | 25000 | 0.7087 | 0.8484 | 0.8225 | |
|
| 0.2658 | 1.6 | 30000 | 0.7185 | 0.8509 | 0.8235 | |
|
| 0.2488 | 1.87 | 35000 | 0.7334 | 0.8486 | 0.8229 | |
|
| 0.2027 | 2.14 | 40000 | 0.8087 | 0.8458 | 0.8201 | |
|
| 0.2112 | 2.41 | 45000 | 0.7449 | 0.8501 | 0.8228 | |
|
| 0.2013 | 2.67 | 50000 | 0.7695 | 0.8502 | 0.8203 | |
|
| 0.2065 | 2.94 | 55000 | 0.7609 | 0.8498 | 0.8128 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|