About the uploaded model
- Quantized by: hassenhamdi
- Original model: ibm-granite/granite-vision-3.1-2b-preview
- precision: 4-bit
Setup
You can run the quantized model with these steps:
Check requirements from the original. In particular, check python, cuda, and transformers versions.
Make sure that you have installed quantization related packages.
pip install bitsandbytes>=0.39.0
pip install --upgrade accelerate transformers
- Load & run the model.
from transformers import AutoProcessor, AutoModelForVision2Seq
from huggingface_hub import hf_hub_download
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForVision2Seq.from_pretrained('hassenhamdi/granite-vision-3.1-2b-preview-4bit', trust_remote_code=True).to(device)
tokenizer = AutoProcessor.from_pretrained('ibm-granite/granite-vision-3.1-2b-preview')
# prepare image and text prompt, using the appropriate prompt template
img_path = hf_hub_download(repo_id=model_path, filename='example.png')
conversation = [
{
"role": "user",
"content": [
{"type": "image", "url": img_path},
{"type": "text", "text": "What is the highest scoring model on ChartQA and what is its score?"},
],
},
]
inputs = processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(device)
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
Configurations
- The configuration info are in config.json.
- Downloads last month
- 195
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for hassenhamdi/granite-vision-3.1-2b-preview-4bit
Base model
ibm-granite/granite-3.1-2b-base
Finetuned
ibm-granite/granite-3.1-2b-instruct