haydarkadioglu/Qwen3-0.6B-lora-python-expert-fine-tuned

Qwen 0.6B LoRA fine-tuned for Python expert tasks

Training Notebook (Google Colab)

You can reproduce the fine-tuning process or adapt it for your own dataset using the Colab notebook:
👉 Open in Google Colab

Model Details

  • Model type: Qwen 0.6B LoRA
  • Base model: Qwen/Qwen-0.6B
  • Fine-tuned by: @haydarkadioglu
  • Language(s): English, Python

Intended Use

  • Primary use case: Code generation, Python expert help
  • Not suitable for: General conversation, non-Python coding tasks

Training Details

  • Dataset: flytech/python-codes-25k
  • Steps / Epochs: 3 epochs, batch size 8
  • Hardware: A100 GPU / Colab T4
  • Fine-tuning method: LoRA / PEFT

Evaluation

Step Training Loss
100 1.8288
500 1.7133
1000 1.5976
1500 1.6438
2000 1.5797
2500 1.5619
3000 1.6235
Final (3102) 1.6443

Final Results: Training loss (avg): 1.64 Steps/sec: 0.645 Samples/sec: 10.3 FLOPs: 5.31e15

Limitations

  • The model might produce incorrect or insecure code.
  • Not guaranteed to follow PEP8.
  • May hallucinate libraries or functions.

Example Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "haydarkadioglu/Qwen3-0.6B-lora-python-expert-fine-tuned"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

prompt = "Write a Python function, this function should return prime numbers between 0-100"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
4
Safetensors
Model size
596M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for haydarkadioglu/Qwen3-0.6B-lora-python-expert-fine-tuned

Finetuned
Qwen/Qwen3-0.6B
Finetuned
(240)
this model

Dataset used to train haydarkadioglu/Qwen3-0.6B-lora-python-expert-fine-tuned