CompCap-GPT4
This model is a fine-tuned version of llava-hf/llava-v1.6-mistral-7b-hf on the CompCap-GPT4 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7652
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9184 | 0.1296 | 50 | 0.9209 |
0.8611 | 0.2592 | 100 | 0.8653 |
0.8257 | 0.3889 | 150 | 0.8396 |
0.8308 | 0.5185 | 200 | 0.8231 |
0.8168 | 0.6481 | 250 | 0.8109 |
0.8021 | 0.7777 | 300 | 0.8005 |
0.7741 | 0.9073 | 350 | 0.7929 |
0.7155 | 1.0369 | 400 | 0.7880 |
0.7322 | 1.1666 | 450 | 0.7837 |
0.7214 | 1.2962 | 500 | 0.7790 |
0.6936 | 1.4258 | 550 | 0.7753 |
0.7046 | 1.5554 | 600 | 0.7717 |
0.6967 | 1.6850 | 650 | 0.7690 |
0.7197 | 1.8146 | 700 | 0.7658 |
0.704 | 1.9443 | 750 | 0.7633 |
0.6546 | 2.0739 | 800 | 0.7677 |
0.651 | 2.2035 | 850 | 0.7673 |
0.6601 | 2.3331 | 900 | 0.7667 |
0.6669 | 2.4627 | 950 | 0.7662 |
0.6566 | 2.5924 | 1000 | 0.7657 |
0.6654 | 2.7220 | 1050 | 0.7655 |
0.6389 | 2.8516 | 1100 | 0.7653 |
0.6574 | 2.9812 | 1150 | 0.7653 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for htlou/backup_0202_llamafactory_CompCap-GPT4-llava-mistral
Base model
llava-hf/llava-v1.6-mistral-7b-hf