DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010
Overview
DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010
is a mixed model that combines the strengths of two powerful DeepSeek-R1-Distill-Qwen-based models:
huihui-ai/DeepSeek-R1-Distill-Qwen-32B-abliterated and
huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated.
Although it's a simple mix, the model is usable, and no gibberish has appeared.
This is an experiment. Improve thinking abilities in programming and code. If any of the models meet your expectations, please give a thumbs up. This will help us finalize which model best meets everyone's expectations.
Model Details
- Base Models:
- Model Size: 32B parameters
- Architecture: Qwen2.5
- Mixing Ratio: 9:1 (DeepSeek-R1-Distill-Qwen-32B-abliterated:Qwen2.5-Coder-32B-Instruct-abliterated)
Usage
You can use this mixed model in your applications by loading it with Hugging Face's transformers
library:
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
# Load the model and tokenizer
model_name = "huihui-ai/DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010"
#quant_config_4 = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_compute_dtype=torch.bfloat16,
# bnb_4bit_use_double_quant=True,
# llm_int8_enable_fp32_cpu_offload=True,
#)
quant_config_8 = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
llm_int8_has_fp16_weight=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
quantization_config=quant_config_8,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clean":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
# Build the chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input and prepare it for the model
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate a response from the model
generated_ids = model.generate(
**model_inputs,
max_new_tokens=8192
)
# Extract model output, removing special tokens
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": response})
# Print the model's response
print(f"Response: {response}")
Use with ollama
You can use huihui_ai/deepseek-r1-Fusion directly
ollama run huihui_ai/deepseek-r1-Fusion
Donation
If you like it, please click 'like' and follow us for more updates.
Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin:
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
- Downloads last month
- 5
Model tree for huihui-ai/DeepSeek-R1-Distill-Qwen-Coder-32B-Fusion-9010
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B