Whisper Pre Tuned 300 Audios - Nacho v2.0
This model is a fine-tuned version of rasel35/whisper-base-es-medical-terms on the 300 audios 1.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4543
- Wer: 19.9630
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.8385 | 1.0 | 18 | 1.1087 | 37.7079 |
0.6509 | 2.0 | 36 | 0.5255 | 25.1386 |
0.2616 | 3.0 | 54 | 0.4827 | 21.2569 |
0.1177 | 4.0 | 72 | 0.4747 | 21.0721 |
0.0719 | 5.0 | 90 | 0.4630 | 20.8872 |
0.0391 | 6.0 | 108 | 0.4802 | 21.8115 |
0.0313 | 7.0 | 126 | 0.4613 | 20.7024 |
0.023 | 8.0 | 144 | 0.4557 | 17.7449 |
0.0104 | 9.0 | 162 | 0.4513 | 20.1479 |
0.0042 | 9.4507 | 170 | 0.4543 | 19.9630 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for igarciahuidobro/whisper-tiny-300-audios
Base model
openai/whisper-base
Finetuned
rasel35/whisper-base-es-medical-terms