jaksani1 commited on
Commit
9dcdcab
·
verified ·
1 Parent(s): b020c57

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -75
README.md CHANGED
@@ -1,76 +1,86 @@
1
- My Colloquial Telugu Model
2
-
3
- Overview
4
-
5
- This model is fine-tuned on colloquial Telugu text to enhance natural language understanding and generation in informal Telugu conversations. It can be used for chatbots, sentiment analysis, text classification, and other NLP tasks.
6
-
7
-
8
- ---
9
-
10
- Model Details
11
-
12
- Model Name: My Colloquial Telugu Model
13
-
14
- Base Model: bert-base-multilingual-cased
15
-
16
- Training Data: Telugu colloquial dataset containing informal conversations
17
-
18
- Fine-tuning Details:
19
-
20
- Epochs: 3
21
-
22
- Batch Size: 16
23
-
24
- Optimizer: AdamW
25
-
26
-
27
- Language: Telugu
28
-
29
-
30
-
31
- ---
32
-
33
- Usage
34
-
35
- This model can be used for text generation, classification, and translation.
36
-
37
- Using the Model in Python
38
-
39
- To use this model in Python, install the required libraries:
40
-
41
- pip install transformers torch
42
-
43
- Then, load the model:
44
-
45
- from transformers import AutoModel, AutoTokenizer
46
-
47
- model_name = "your-hf-username/my_colloquial_telugu_model"
48
- tokenizer = AutoTokenizer.from_pretrained(model_name)
49
- model = AutoModel.from_pretrained(model_name)
50
-
51
- text = "ఇవాళ వాతావరణం ఎలా ఉంది?"
52
- inputs = tokenizer(text, return_tensors="pt")
53
- outputs = model(**inputs)
54
- print(outputs)
55
-
56
-
57
- ---
58
-
59
- Performance
60
-
61
- Accuracy/F1 Score: TBD (To Be Determined)
62
-
63
- Limitations:
64
-
65
- May struggle with highly formal or technical Telugu text.
66
-
67
- Performance depends on dataset quality and coverage.
68
-
69
-
70
-
71
-
72
- ---
73
-
74
- License
75
-
 
 
 
 
 
 
 
 
 
 
76
  This model is released under the Apache 2.0 license.
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - jaksani1/TeluguDataset
5
+ language:
6
+ - te
7
+ - en
8
+ base_model:
9
+ - google-bert/bert-base-multilingual-cased
10
+ ---
11
+ My Colloquial Telugu Model
12
+
13
+ Overview
14
+
15
+ This model is fine-tuned on colloquial Telugu text to enhance natural language understanding and generation in informal Telugu conversations. It can be used for chatbots, sentiment analysis, text classification, and other NLP tasks.
16
+
17
+
18
+ ---
19
+
20
+ Model Details
21
+
22
+ Model Name: My Colloquial Telugu Model
23
+
24
+ Base Model: bert-base-multilingual-cased
25
+
26
+ Training Data: Telugu colloquial dataset containing informal conversations
27
+
28
+ Fine-tuning Details:
29
+
30
+ Epochs: 3
31
+
32
+ Batch Size: 16
33
+
34
+ Optimizer: AdamW
35
+
36
+
37
+ Language: Telugu
38
+
39
+
40
+
41
+ ---
42
+
43
+ Usage
44
+
45
+ This model can be used for text generation, classification, and translation.
46
+
47
+ Using the Model in Python
48
+
49
+ To use this model in Python, install the required libraries:
50
+
51
+ pip install transformers torch
52
+
53
+ Then, load the model:
54
+
55
+ from transformers import AutoModel, AutoTokenizer
56
+
57
+ model_name = "your-hf-username/my_colloquial_telugu_model"
58
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
59
+ model = AutoModel.from_pretrained(model_name)
60
+
61
+ text = "ఇవాళ వాతావరణం ఎలా ఉంది?"
62
+ inputs = tokenizer(text, return_tensors="pt")
63
+ outputs = model(**inputs)
64
+ print(outputs)
65
+
66
+
67
+ ---
68
+
69
+ Performance
70
+
71
+ Accuracy/F1 Score: TBD (To Be Determined)
72
+
73
+ Limitations:
74
+
75
+ May struggle with highly formal or technical Telugu text.
76
+
77
+ Performance depends on dataset quality and coverage.
78
+
79
+
80
+
81
+
82
+ ---
83
+
84
+ License
85
+
86
  This model is released under the Apache 2.0 license.