baseline_nli_bert-large

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9293
  • Accuracy: 0.6163
  • Precision: 0.6163
  • Recall: 0.6163
  • F1 Score: 0.6185

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 101
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
1.0447 1.0 2583 0.9867 0.4602 0.4602 0.4602 0.4166
0.9632 2.0 5166 0.9132 0.5926 0.5926 0.5926 0.5965
0.9063 3.0 7749 0.8976 0.6076 0.6076 0.6076 0.6116
0.846 4.0 10332 0.8826 0.6218 0.6218 0.6218 0.6212
0.7975 5.0 12915 0.9189 0.6136 0.6136 0.6136 0.6169
0.7605 6.0 15498 0.9293 0.6163 0.6163 0.6163 0.6185

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
28
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jalaluddin94/baseline_nli_bert-large

Finetuned
(125)
this model