YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Classifier for Selecting Pathology Images

This is a ConvNext-tiny model trained on 30K annotations on if image is belongs to the pathology image or non-pathology image.

Usage

Step1: Download model checkpoint in convnext-pathology-classifier .

Step2: Load the model

You can use the following code to load the model.

import timm ##timm version 0.9.7
import torch.nn as nn
import torch
from torchvision import transforms
from PIL import Image

class CT_SINGLE(nn.Module):
    def __init__(self, model_name):
        super(CT_SINGLE, self).__init__()
        print(model_name)
        self.model_global = timm.create_model(model_name, pretrained=False, num_classes=0)
        self.fc = nn.Linear(768, 2)

    def forward(self, x_global):
        features_global = self.model_global(x_global)
        logits = self.fc(features_global)
        return logits

def load_model(checkpoint_path, model):
    checkpoint = torch.load(checkpoint_path, map_location='cpu')
    model.load_state_dict(checkpoint['model'])
    print("Resume checkpoint %s" % checkpoint_path)

##load the model
model = CT_SINGLE('convnext_tiny')
model_path = 'Your model path'
load_model(model_path, model)
model.eval().cuda()

Step3: Construct and predict your own data

In this step, you'll construct your own dataset. Use PIL to load images and employ transforms from torchvision for data preprocessing.

def default_loader(path):
    img = Image.open(path)
    return img.convert('RGB')

data_transforms = transforms.Compose([
        transforms.Resize((224,224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

def predict(img_path, model):
    img = default_loader(img_path)
    img = data_transforms(img)
    img = img.unsqueeze(0)
    img = img.cuda()
    output = model(img)
    _, pred = torch.topk(output, 1, dim=-1)
    pred = pred.data.cpu().numpy()[:, 0]
    return pred   ## 0 indicates non-pathology image and 1 indicates pathology image

img_path = 'Your image path'
pred = predict(img_path, model)
print(pred)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.