ade_biobert_output

This model is a fine-tuned version of jay0911/fine-tuned-aemodel on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3619
  • Precision: 0.9353
  • Recall: 0.9358
  • F1: 0.9355
  • Recall Positive: 0.8686
  • Recall Negative: 0.9613

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Recall Positive Recall Negative
0.1921 0.2126 500 0.2565 0.9347 0.9332 0.9337 0.9147 0.9412
0.1893 0.4252 1000 0.2461 0.9409 0.9392 0.9397 0.9289 0.9436
0.2207 0.6378 1500 0.2583 0.9421 0.9418 0.9419 0.9104 0.9551
0.1706 0.8503 2000 0.3926 0.9216 0.9205 0.9183 0.7866 0.9776
0.1219 1.0629 2500 0.3413 0.9373 0.9354 0.9359 0.9246 0.9400
0.1097 1.2755 3000 0.3073 0.9453 0.9456 0.9453 0.8919 0.9685
0.1645 1.4881 3500 0.2700 0.9433 0.9430 0.9431 0.9118 0.9563
0.2348 1.7007 4000 0.2449 0.9452 0.9456 0.9452 0.8876 0.9703
0.2718 1.9133 4500 0.2304 0.9425 0.9426 0.9425 0.8990 0.9612

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
36
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jay0911/ade_biobert_output

Finetuned
(1)
this model

Dataset used to train jay0911/ade_biobert_output