deepfake-audio-detector_V2

This model is a fine-tuned version of Heem2/Deepfake-audio-detection on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0708
  • Accuracy: 0.9961
  • Precision: 0.9949
  • Recall: 0.9974
  • F1: 0.9961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4204 1.0 388 0.5132 0.9691 0.9483 0.9923 0.9698
0.5578 2.0 776 0.3286 0.9794 0.9697 0.9897 0.9796
0.2106 3.0 1164 0.1348 0.9923 0.9923 0.9923 0.9923
0.2262 4.0 1552 0.0624 0.9961 0.9923 1.0 0.9961
0.0 4.9884 1935 0.0708 0.9961 0.9949 0.9974 0.9961

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jayalakshmikopuri/deepfake-audio-detector_V2

Finetuned
(13)
this model