jayalakshmikopuri commited on
Commit
840c57f
·
verified ·
1 Parent(s): e4894a6

Model save

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: Heem2/Deepfake-audio-detection
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: deepfake-audio-detector_V2
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # deepfake-audio-detector_V2
21
+
22
+ This model is a fine-tuned version of [Heem2/Deepfake-audio-detection](https://huggingface.co/Heem2/Deepfake-audio-detection) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1666
25
+ - Accuracy: 0.9897
26
+ - Precision: 0.9912
27
+ - Recall: 0.9882
28
+ - F1: 0.9897
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 4
49
+ - eval_batch_size: 4
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 2
52
+ - total_train_batch_size: 8
53
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_steps: 100
56
+ - num_epochs: 5
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
63
+ | 0.1668 | 1.0 | 340 | 0.2081 | 0.9853 | 0.9853 | 0.9853 | 0.9853 |
64
+ | 0.4339 | 2.0 | 680 | 0.2996 | 0.9809 | 0.9823 | 0.9794 | 0.9809 |
65
+ | 0.0 | 3.0 | 1020 | 0.1666 | 0.9897 | 0.9912 | 0.9882 | 0.9897 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.51.3
71
+ - Pytorch 2.6.0+cu124
72
+ - Datasets 3.6.0
73
+ - Tokenizers 0.21.1