TA-SAE Model Card
This repository contains the trained Temporal-Aware Sparse AutoEncoder (TA-SAE) models for different layers.
Model Description
TA-SAE is a specialized autoencoder model designed for temporal feature extraction and compression. Each layer model represents a different level of feature abstraction in the network.
Usage
Installation
pip install huggingface_hub
Loading Models
Download a specific file:
from huggingface_hub import hf_hub_download
# Download specific layer model
file_path = hf_hub_download(
repo_id="jeix/TA-SAE",
filename="PixArt/SAE-Layer0/model.safetensors"
)
Download all files for a specific layer:
from huggingface_hub import snapshot_download
# Download all files for layer0
local_dir = snapshot_download(
repo_id="jeix/TA-SAE",
repo_type="model",
allow_patterns="PixArt/SAE-Layer0/*"
)
Download all layers:
local_dir = snapshot_download(
repo_id="jeix/TA-SAE",
repo_type="model",
allow_patterns="PixArt/SAE-Layer*/*"
)
Using Command Line
Install CLI tool
pip install -U huggingface_hub
Download specific file
huggingface-cli download jeix/TA-SAE --local-dir ./download --include "PixArt/SAE-Layer0/model.safetensors"
Model Files Description
Each layer directory contains the following files:
model.safetensors
: The main model weightsoptimizer.bin
: Optimizer statescheduler.bin
: Learning rate scheduler staterandom_states_0.pkl
: Random state informationscaler.pt
: Data scaling parameters
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.