TA-SAE Model Card

This repository contains the trained Temporal-Aware Sparse AutoEncoder (TA-SAE) models for different layers.

Model Description

TA-SAE is a specialized autoencoder model designed for temporal feature extraction and compression. Each layer model represents a different level of feature abstraction in the network.

Usage

Installation

pip install huggingface_hub

Loading Models

Download a specific file:

from huggingface_hub import hf_hub_download

# Download specific layer model
file_path = hf_hub_download(
    repo_id="jeix/TA-SAE",
    filename="PixArt/SAE-Layer0/model.safetensors"
)

Download all files for a specific layer:

from huggingface_hub import snapshot_download

# Download all files for layer0
local_dir = snapshot_download(
    repo_id="jeix/TA-SAE",
    repo_type="model",
    allow_patterns="PixArt/SAE-Layer0/*"
)

Download all layers:

local_dir = snapshot_download(
    repo_id="jeix/TA-SAE",
    repo_type="model",
    allow_patterns="PixArt/SAE-Layer*/*"
)

Using Command Line

Install CLI tool

pip install -U huggingface_hub

Download specific file

huggingface-cli download jeix/TA-SAE --local-dir ./download --include "PixArt/SAE-Layer0/model.safetensors"

Model Files Description

Each layer directory contains the following files:

  • model.safetensors: The main model weights
  • optimizer.bin: Optimizer state
  • scheduler.bin: Learning rate scheduler state
  • random_states_0.pkl: Random state information
  • scaler.pt: Data scaling parameters
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.