Whisper Small Medical Swiss-German

This model is a fine-tuned version of openai/whisper-small on the Whisper medical german dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3155
  • Wer: 16.8239

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.4619 50 0.3501 20.2859
0.3346 0.9238 100 0.3196 16.6067
0.3346 1.3788 150 0.3138 16.7493
0.1855 1.8406 200 0.3054 17.4463
0.1855 2.2956 250 0.3073 15.3230
0.1107 2.7575 300 0.3073 18.4576
0.1107 3.2125 350 0.3130 17.4754
0.0687 3.6744 400 0.3155 16.8239

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jempf/whisper-small-medical-de

Finetuned
(2309)
this model

Dataset used to train jempf/whisper-small-medical-de

Evaluation results