BSG CyLLama - Scientific Summarization Model
BSG CyLLama is a fine-tuned Llama-3.2-1B-Instruct model specialized for scientific text summarization. The model is trained to generate high-quality abstracts and summaries from scientific papers and research content.
Model Details
- Base Model: meta-llama/Llama-3.2-1B-Instruct
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
- Training Samples: 19,174 scientific abstracts and summaries
- Task: Scientific Text Summarization
- Language: English
Training Configuration
- LoRA Rank: 128
- LoRA Alpha: 256
- LoRA Dropout: 0.05
- Target Modules: v_proj, o_proj, k_proj, gate_proj, q_proj, up_proj, down_proj
- Embedding Dimension: 1024
- Hidden Dimension: 2048
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Load base model and tokenizer
base_model_name = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "path/to/bsg-cyllama")
# Example usage
def generate_summary(text, max_length=200):
prompt = f"Summarize the following scientific text:\n\n{text}\n\nSummary:"
inputs = tokenizer.encode(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id
)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary.split("Summary:")[-1].strip()
# Example
scientific_text = "Your scientific paper content here..."
summary = generate_summary(scientific_text)
print(summary)
Training Data
The model was trained on a comprehensive dataset of scientific abstracts and summaries:
- Total Records: 19,174
- Sources: Scientific literature including biomedical, computational, and interdisciplinary research
- Format: Abstract → Summary pairs with metadata
- Quality: Curated and clustered data with quality filtering
Files Included
adapter_config.json
: LoRA adapter configurationadapter_model.safetensors
: LoRA adapter weightsconfig.json
: Model configurationprompt_generator.pt
: Prompt generation utilitiestokenizer.*
: Tokenizer files- Training scripts and data processing utilities
Training Scripts
bsg_cyllama_trainer_v2.py
: Main training scriptscientific_model_inference2.py
: Inference utilitiesbsg_training_data_gen.py
: Data generation pipelinecompile_complete_training_data.py
: Data compilation script
Performance
The model demonstrates strong performance in:
- Scientific abstract summarization
- Research paper summarization
- Technical content condensation
- Maintaining scientific accuracy and terminology
Limitations
- Specialized for scientific text; may not perform optimally on general text
- Based on Llama-3.2-1B, so has inherent size limitations
- English language only
- May require domain-specific fine-tuning for highly specialized fields
Citation
@misc{bsg-cyllama-2025,
title={BSG CyLLama: Scientific Summarization with LoRA-tuned Llama},
author={BSG Research Team},
year={2025},
url={https://huggingface.co/bsg-cyllama}
}
License
Please refer to the base Llama-3.2 license terms for usage guidelines.
Contact
For questions or collaboration opportunities, please open an issue in this repository.