jina-code-embeddings
Collection
high quality code embeddings trained from code generation models
•
5 items
•
Updated
•
8
The code embedding model trained by Jina AI.
jina-code-embeddings
is an embedding model for code retrieval.
The model supports various types of code retrieval (text-to-code, code-to-code, code-to-text, code-to-completion) and technical question answering across 15+ programming languages.
Built on Qwen/Qwen2.5-Coder-0.5B, jina-code-embeddings-0.5b
features:
Summary of features:
Feature | Jina Code Embeddings 0.5B |
---|---|
Base Model | Qwen2.5-Coder-0.5B |
Supported Tasks | nl2code , code2code , code2nl , code2completion , qa |
Model DType | BFloat 16 |
Max Sequence Length | 32768 |
Embedding Vector Dimension | 896 |
Matryoshka dimensions | 64, 128, 256, 512, 896 |
Pooling Strategy | Last-token pooling |
Attention Mechanism | FlashAttention2 |
The following Python packages are required:
transformers>=4.53.0
torch>=2.7.1
sentence-transformers
interface, install this package as well.# !pip install transformers>=4.53.0 torch>=2.7.1
import torch
import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer
INSTRUCTION_CONFIG = {
"nl2code": {
"query": "Find the most relevant code snippet given the following query:\n",
"passage": "Candidate code snippet:\n"
},
"qa": {
"query": "Find the most relevant answer given the following question:\n",
"passage": "Candidate answer:\n"
},
"code2code": {
"query": "Find an equivalent code snippet given the following code snippet:\n",
"passage": "Candidate code snippet:\n"
},
"code2nl": {
"query": "Find the most relevant comment given the following code snippet:\n",
"passage": "Candidate comment:\n"
},
"code2completion": {
"query": "Find the most relevant completion given the following start of code snippet:\n",
"passage": "Candidate completion:\n"
}
}
MAX_LENGTH = 8192
def cosine_similarity(x,y):
x = F.normalize(x, p=2, dim=1)
y = F.normalize(y, p=2, dim=1)
return x @ y.T
def last_token_pool(last_hidden_states, attention_mask):
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def add_instruction(instruction, query):
return f'{instruction}{query}'
# The queries and documents to embed
queries = [
add_instruction(INSTRUCTION_CONFIG["nl2code"]["query"], "print hello world in python"),
add_instruction(INSTRUCTION_CONFIG["nl2code"]["query"], "initialize array of 5 zeros in c++")
]
documents = [
add_instruction(INSTRUCTION_CONFIG["nl2code"]["passage"], "print('Hello World!')"),
add_instruction(INSTRUCTION_CONFIG["nl2code"]["passage"], "int arr[5] = {0, 0, 0, 0, 0};")
]
all_inputs = queries + documents
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-code-embeddings-0.5b')
model = AutoModel.from_pretrained('jinaai/jina-code-embeddings-0.5b')
batch_dict = tokenizer(
all_inputs,
padding=True,
truncation=True,
max_length=MAX_LENGTH,
return_tensors="pt",
)
batch_dict.to(model.device)
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
query_embeddings = embeddings[:2]
passage_embeddings = embeddings[2:]
# Compute the (cosine) similarity between the query and document embeddings
scores = cosine_similarity(query_embeddings, passage_embeddings)
print(scores)
# tensor([[0.8168, 0.1236],
# [0.1204, 0.5525]], grad_fn=<MmBackward0>)
# !pip install sentence_transformers>=5.0.0 torch>=2.7.1
import torch
from sentence_transformers import SentenceTransformer
# Load the model
model = SentenceTransformer(
"jinaai/jina-code-embeddings-0.5b",
model_kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2",
"device_map": "cuda"
},
tokenizer_kwargs={"padding_side": "left"},
)
# The queries and documents to embed
queries = [
"print hello world in python",
"initialize array of 5 zeros in c++"
]
documents = [
"print('Hello World!')",
"int arr[5] = {0, 0, 0, 0, 0};"
]
query_embeddings = model.encode(queries, prompt_name="nl2code_query")
document_embeddings = model.encode(documents, prompt_name="nl2code_document")
# Compute the (cosine) similarity between the query and document embeddings
similarity = model.similarity(query_embeddings, document_embeddings)
print(similarity)
# tensor([[0.8169, 0.1214],
# [0.1190, 0.5500]])
import torch
import torch.nn.functional as F
from vllm import LLM
INSTRUCTION_CONFIG = {
"nl2code": {
"query": "Find the most relevant code snippet given the following query:\n",
"passage": "Candidate code snippet:\n"
},
"qa": {
"query": "Find the most relevant answer given the following question:\n",
"passage": "Candidate answer:\n"
},
"code2code": {
"query": "Find an equivalent code snippet given the following code snippet:\n",
"passage": "Candidate code snippet:\n"
},
"code2nl": {
"query": "Find the most relevant comment given the following code snippet:\n",
"passage": "Candidate comment:\n"
},
"code2completion": {
"query": "Find the most relevant completion given the following start of code snippet:\n",
"passage": "Candidate completion:\n"
}
}
def add_instruction(instruction, text):
return f"{instruction}{text}"
def cosine_similarity(x, y):
x = F.normalize(x, p=2, dim=1)
y = F.normalize(y, p=2, dim=1)
return x @ y.T
# Build the queries and documents
queries = [
add_instruction(INSTRUCTION_CONFIG["nl2code"]["query"], "print hello world in python"),
add_instruction(INSTRUCTION_CONFIG["nl2code"]["query"], "initialize array of 5 zeros in c++"),
]
documents = [
add_instruction(INSTRUCTION_CONFIG["nl2code"]["passage"], "print('Hello World!')"),
add_instruction(INSTRUCTION_CONFIG["nl2code"]["passage"], "int arr[5] = {0, 0, 0, 0, 0};"),
]
all_inputs = queries + documents
# vLLM embedding model
llm = LLM(
model="jinaai/jina-code-embeddings-0.5b",
task="embed"
)
# Encode with vLLM
outputs = llm.encode(all_inputs)
# Collect embeddings into a single tensor
emb_list = []
for out in outputs:
vec = out.outputs.data.detach()
emb_list.append(vec)
embeddings = torch.stack(emb_list, dim=0)
# Split into query and passage embeddings
n_q = len(queries)
query_embeddings = embeddings[:n_q]
passage_embeddings = embeddings[n_q:]
# Cosine similarity matrix (queries x documents)
scores = cosine_similarity(query_embeddings, passage_embeddings)
print(scores)
# tensor([[0.8171, 0.1230],
# [0.1207, 0.5513]])
Please refer to our technical report of jina-code-embeddings for training details and benchmarks. If you find it useful in your research, please cite the following paper:
@misc{kryvosheieva2025efficientcodeembeddingscode,
title={Efficient Code Embeddings from Code Generation Models},
author={Daria Kryvosheieva and Saba Sturua and Michael Günther and Scott Martens and Han Xiao},
year={2025},
eprint={2508.21290},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2508.21290},
}
Join our Discord community and chat with other community members about ideas.