GGUF
🇪🇺 Region: EU
ajinauser's picture
Update README.md
941797c verified
---
base_model:
- jinaai/jina-code-embeddings-0.5b
base_model_relation: quantized
license: cc-by-nc-4.0
---
<p align="center">
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
</p>
<p align="center">
<b>The GGUF version of the code embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
# Jina Code Embeddings: A Small but Performant Code Embedding Model
## Intended Usage & Model Info
`jina-code-embeddings-0.5b-GGUF` is the **GGUF export** of our [jina-code-embeddings-0.5b](https://huggingface.co/jinaai/jina-code-embeddings-0.5b), built on [Qwen/Qwen2.5-Coder-0.5B](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B).
The model supports code retrieval and technical QA across **15+ programming languages** and multiple domains, including web development, software development, machine learning, data science, and educational coding problems.
### Key Features
| Feature | Jina Code Embeddings 0.5B GGUF |
|------------------------|--------------------------------|
| Base Model | Qwen2.5-Coder-0.5B |
| Supported Tasks | `nl2code`, `code2code`, `code2nl`, `code2completion`, `qa` |
| Max Sequence Length | 32768 (**recommended ≤ 8192**) |
| Embedding Vector Dim | **896** |
| Matryoshka Dimensions | 64, 128, 256, 512, 896 (**client-side slice**) |
| Pooling Strategy | **MUST use `--pooling last`** (EOS) |
> **Matryoshka note:** `llama.cpp` always returns **896-d** embeddings for this model. To use 64/128/256/512, **slice client-side** (e.g., take the first *k* elements).
---
## Task Instructions
Prefix inputs with task-specific instructions:
```python
INSTRUCTION_CONFIG = {
"nl2code": {
"query": "Find the most relevant code snippet given the following query:\n",
"passage": "Candidate code snippet:\n"
},
"qa": {
"query": "Find the most relevant answer given the following question:\n",
"passage": "Candidate answer:\n"
},
"code2code": {
"query": "Find an equivalent code snippet given the following code snippet:\n",
"passage": "Candidate code snippet:\n"
},
"code2nl": {
"query": "Find the most relevant comment given the following code snippet:\n",
"passage": "Candidate comment:\n"
},
"code2completion": {
"query": "Find the most relevant completion given the following start of code snippet:\n",
"passage": "Candidate completion:\n"
}
}
````
Use the appropriate prefix for **queries** and **passages** at inference time.
---
## Install `llama.cpp`
Follow the official instructions: **[https://github.com/ggml-org/llama.cpp](https://github.com/ggml-org/llama.cpp)**
---
## Model files
Hugging Face repo (GGUF): **[https://huggingface.co/jinaai/jina-code-embeddings-0.5b-GGUF](https://huggingface.co/jinaai/jina-code-embeddings-0.5b-GGUF)**
Pick a file (e.g., `jina-code-embeddings-0.5b-F16.gguf`). You can either:
* **auto-download** by passing the **repo and file directly** to `llama.cpp`
* **use a local path** with `-m`
---
## HTTP service with `llama-server`
### Auto-download from Hugging Face (repo + file)
```bash
./llama-server \
--embedding \
--hf-repo jinaai/jina-code-embeddings-0.5b-GGUF \
--hf-file jina-code-embeddings-0.5b-F16.gguf \
--host 0.0.0.0 \
--port 8080 \
--ctx-size 32768 \
--ubatch-size 8192 \
--pooling last
```
### Local file
```bash
./llama-server \
--embedding \
-m /path/to/jina-code-embeddings-0.5b-F16.gguf \
--host 0.0.0.0 \
--port 8080 \
--ctx-size 32768 \
--ubatch-size 8192 \
--pooling last
```
> Tips: `-ngl <N>` to offload layers to GPU. Max context is 32768 but stick to `--ubatch-size` ≤ 8192 for best results.
---
## Query examples (HTTP)
### Native endpoint (`/embedding`)
```bash
curl -X POST http://localhost:8080/embedding \
-H "Content-Type: application/json" \
-d '{
"content": [
"Find the most relevant code snippet given the following query:\nprint hello world in python",
"Candidate code snippet:\nprint(\"Hello World!\")"
]
}'
```
### OpenAI-compatible (`/v1/embeddings`)
```bash
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"input": [
"Find the most relevant code snippet given the following query:\nprint hello world in python",
"Candidate code snippet:\nprint(\"Hello World!\")"
]
}'
```
---
## Training & Evaluation
See our technical report: **[https://arxiv.org/abs/2508.21290](https://arxiv.org/abs/2508.21290)**
---
## Contact
Join our Discord: **[https://discord.jina.ai](https://discord.jina.ai)**