File size: 3,099 Bytes
e31b922 4d12d10 e31b922 01bf1da e31b922 01bf1da e31b922 d064537 e31b922 01bf1da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
base_model:
- Qwen/Qwen2.5-Coder-0.5B
---
<br><br>
<p align="center">
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
</p>
<p align="center">
<b>The code embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
# Jina Embeddings c1: A Small but Performant Code Embedding Model
## Intended Usage & Model Info
`jina-embeddings-c1` is an embedding model for code retrieval.
The model supports various types of code retrieval (text-to-code, code-to-code, code-to-text, code-to-completion) and technical question answering across 15+ programming languages.
Built on [Qwen/Qwen2.5-Coder-0.5B](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B), `jina-embeddings-c1` features:
- **Multilingual support** (15+ programming languages) and compatibility with a wide range of domains, including web development, software development, machine learning, data science, and educational coding problems.
- **Task-specific instruction prefixes** for NL2Code, Code2Code, Code2NL, Code2Completion, and Technical QA, which can be selected at inference time.
- **Flexible embedding size**: dense embeddings are 896-dimensional by default but can be truncated to as low as 64 with minimal performance loss.
Summary of features:
| Feature | Jina Embeddings C1 |
|------------|------------|
| Base Model | Qwen2.5-Coder-0.5B |
| Supported Tasks | `nl2code`, `code2code`, `code2nl`, `code2completion`, `qa` |
| Model DType | BFloat 16 |
| Max Sequence Length | 32768 |
| Embedding Vector Dimension | 896 |
| Matryoshka dimensions | 64, 128, 256, 512, 896 |
| Pooling Strategy | Last-token pooling |
| Attention Mechanism | FlashAttention2 |
## Usage
<details>
<summary>Requirements</a></summary>
The following Python packages are required:
- `transformers>=4.53.0`
- `torch>=2.7.1`
### Optional / Recommended
- **flash-attention**: Installing [flash-attention](https://github.com/Dao-AILab/flash-attention) is recommended for improved inference speed and efficiency, but not mandatory.
</details>
<details>
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>
```python
# !pip install transformers>=4.53.0 torch>=2.7.1
from transformers import AutoModel
import torch
# Initialize the model
model = AutoModel.from_pretrained("jinaai/jina-embeddings-c1-0.5B", trust_remote_code=True)
model.to("cuda")
# Configure truncate_dim, max_length, batch_size in the encode function if needed
# Encode query
query_embeddings = model.encode(
["print hello world in python"],
task="nl2code",
prompt_name="query",
)
# Encode passage
passage_embeddings = model.encode(
["print('Hello World!')"],
task="nl2code",
prompt_name="passage",
)
```
</details>
## Training & Evaluation
Please refer to our technical report of jina-embeddings-c1 for training details and benchmarks.
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. |