File size: 7,763 Bytes
f3d0bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from typing import List, Dict, Tuple, Union, Any, Optional

import os
import json
import torch

from torch import nn
from transformers import AutoConfig, AutoModel, AutoTokenizer
from transformers.utils import is_flash_attn_2_available


INSTRUCTION_CONFIG = {
    "nl2code": {
        "query": "Find the most relevant code snippet given the following query:\n",
        "passage": "Candidate code snippet:\n"
    },
    "qa": {
        "query": "Find the most relevant answer given the following question:\n",
        "passage": "Candidate answer:\n"
    },
    "code2code": {
        "query": "Find an equivalent code snippet given the following code snippet:\n",
        "passage": "Candidate code snippet:\n"
    },
    "code2nl": {
        "query": "Find the most relevant comment given the following code snippet:\n",
        "passage": "Candidate comment:\n"
    },
    "code2completion": {
        "query": "Find the most relevant completion given the following start of code snippet:\n",
        "passage": "Candidate completion:\n"
    }
}


def batch(iterable, n=1):
    items = len(iterable)
    for ndx in range(0, items, n):
        yield iterable[ndx : min(ndx + n, items)]


def last_token_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return token_embeddings[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = token_embeddings.shape[0]
        return token_embeddings[torch.arange(batch_size, device=token_embeddings.device), sequence_lengths].float()


class Transformer(nn.Module):
    def __init__(
        self,
        model_name_or_path: str,
        max_seq_length: int = None,
        model_args: Dict[str, Any] = None,
        tokenizer_args: Dict[str, Any] = None,
        config_args: Dict[str, Any] = None,
        cache_dir: str = None,
        do_lower_case: bool = False,
        tokenizer_name_or_path: str = None,
        **kwargs,
    ) -> None:
        super().__init__()
        self.config_keys = ["max_seq_length", "do_lower_case"]
        self.do_lower_case = do_lower_case
        if model_args is None:
            model_args = {}
        if tokenizer_args is None:
            tokenizer_args = {}
        if config_args is None:
            config_args = {}
        
        self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)

        self.task_names = self.config.task_names

        self.default_task = model_args.pop('default_task', None)

        model_args["attn_implementation"] = "flash_attention_2" if is_flash_attn_2_available() else "sdpa"

        self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)

        if max_seq_length is not None and "model_max_length" not in tokenizer_args:
            tokenizer_args["model_max_length"] = max_seq_length
        self.tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
            cache_dir=cache_dir,
            **tokenizer_args,
        )

        # No max_seq_length set. Try to infer from model
        if max_seq_length is None:
            if (
                hasattr(self.auto_model, "config")
                and hasattr(self.auto_model.config, "max_position_embeddings")
                and hasattr(self.tokenizer, "model_max_length")
            ):
                max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)

        self.max_seq_length = max_seq_length

        if tokenizer_name_or_path is not None:
            self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
    

    @property
    def default_task(self):
        return self._default_task


    @default_task.setter
    def default_task(self, task: Union[None, str]):
        self._validate_task(task)
        self._default_task = task
        

    def _validate_task(self, task: str):
        if task and task not in self.task_names:
            raise ValueError(
                f"Unsupported task '{task}'. "
                f"Supported tasks are: {', '.join(self.config.task_names)}."
            )
    

    def forward(
        self,
        features: Dict[str, torch.Tensor],
        task: Optional[str] = None
    ) -> Dict[str, torch.Tensor]:
        """
        Forward pass through the model.
        """
        features.pop('prompt_length', None)
        output_states = self.auto_model.forward(
            **features,
            output_attentions=False,
            return_dict=True
        )
        output_tokens = output_states[0]
        features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
        return features


    def get_word_embedding_dimension(self) -> int:
        return self.auto_model.config.hidden_size
    

    def tokenize(
        self,
        texts: Union[List[str], List[dict], List[Tuple[str, str]]],
        padding: Union[str, bool] = True
    ) -> Dict[str, torch.Tensor]:
        """Tokenizes a text and maps tokens to token-ids"""
        output = {}
        if isinstance(texts[0], str):
            to_tokenize = [texts]
        elif isinstance(texts[0], dict):
            to_tokenize = []
            output["text_keys"] = []
            for lookup in texts:
                text_key, text = next(iter(lookup.items()))
                to_tokenize.append(text)
                output["text_keys"].append(text_key)
            to_tokenize = [to_tokenize]
        else:
            batch1, batch2 = [], []
            for text_tuple in texts:
                batch1.append(text_tuple[0])
                batch2.append(text_tuple[1])
            to_tokenize = [batch1, batch2]

        # strip
        to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]

        # Lowercase
        if self.do_lower_case:
            to_tokenize = [[s.lower() for s in col] for col in to_tokenize]

        output.update(
            self.tokenizer(
                *to_tokenize,
                padding=padding,
                truncation=True,
                return_tensors="pt",
                max_length=self.max_seq_length,
            )
        )
        return output
    

    def get_config_dict(self) -> Dict[str, Any]:
         return {key: self.__dict__[key] for key in self.config_keys}


    def save(self, output_path: str, safe_serialization: bool = True) -> None:
        self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
        self.tokenizer.save_pretrained(output_path)

        with open(os.path.join(output_path, "sentence_transformer_config.json"), "w") as fOut:
            json.dump(self.get_config_dict(), fOut, indent=2)
    

    @classmethod
    def load(cls, input_path: str) -> "Transformer":
        config_name = "sentence_transformer_config.json"
        stransformer_config_path = os.path.join(input_path, config_name)
        with open(stransformer_config_path) as fIn:
            config = json.load(fIn)
        # Don't allow configs to set trust_remote_code
        if "model_args" in config and "trust_remote_code" in config["model_args"]:
            config["model_args"].pop("trust_remote_code")
        if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
            config["tokenizer_args"].pop("trust_remote_code")
        if "config_args" in config and "trust_remote_code" in config["config_args"]:
            config["config_args"].pop("trust_remote_code")
        return cls(model_name_or_path=input_path, **config)