File size: 5,908 Bytes
8fc3a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from typing import List, Union

import torch
import numpy as np

from transformers.utils import is_flash_attn_2_available
from transformers.models.qwen2 import Qwen2Model
from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config


INSTRUCTION_CONFIG = {
    "nl2code": {
        "query": "Find the most relevant code snippet given the following query:\n",
        "passage": "Candidate code snippet:\n"
    },
    "qa": {
        "query": "Find the most relevant answer given the following question:\n",
        "passage": "Candidate answer:\n"
    },
    "code2code": {
        "query": "Find an equivalent code snippet given the following code snippet:\n",
        "passage": "Candidate code snippet:\n"
    },
    "code2nl": {
        "query": "Find the most relevant comment given the following code snippet:\n",
        "passage": "Candidate comment:\n"
    },
    "code2completion": {
        "query": "Find the most relevant completion given the following start of code snippet:\n",
        "passage": "Candidate completion:\n"
    }
}


def batch(iterable, n=1):
    items = len(iterable)
    for ndx in range(0, items, n):
        yield iterable[ndx : min(ndx + n, items)]


def last_token_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return token_embeddings[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = token_embeddings.shape[0]
        return token_embeddings[torch.arange(batch_size, device=token_embeddings.device), sequence_lengths].float()


class JinaEmbeddingsC1Model(Qwen2Model):
    def __init__(self, config: Qwen2Config):
        Qwen2Model.__init__(self, config)
        self.instructions = INSTRUCTION_CONFIG
    

    def forward(
        self,
        input_ids: torch.LongTensor,
        attention_mask: torch.Tensor,
        **kwargs
    ) -> List[torch.Tensor]:
        """
        Forward pass through the model.
        """
        batch_model_output = super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            **kwargs
        )
        batch_sentence_embeddings = last_token_pooling(
            batch_model_output, attention_mask
        )
        return batch_sentence_embeddings


    def encode(
        self,
        sentences: List[str],
        batch_size: int = 32,
        max_length: int = 32768,
        task: str = "nl2code",
        prompt_name: str = "query",
        return_numpy: bool = False,
        truncate_dim: int = 896,
    ) -> Union[np.ndarray, List[torch.Tensor]]:
        """
        Encodes a list of texts into embeddings.
        Args:
            sentences: list of text strings to encode
            batch_size: Number of texts to process at once
            max_length: Maximum token length for text processing
            task: Type of retrieval task ('nl2code', 'qa', or 'code2code')
            prompt_name: Type of text being encoded ('query' or 'passage')
            return_numpy: Whether to return numpy arrays instead of torch tensors
            truncate_dim: Dimension to truncate embeddings to (64, 128, 256, 512, or 896)
        Returns:
            List of text embeddings as tensors or numpy arrays
        """
        assert task in self.config.task_names, \
            f"Invalid task: {task}. Must be one of {self.config.task_names}."
        assert prompt_name in self.config.prompt_names, \
            f"Invalid prompt name: {prompt_name}. Must be one of {self.config.prompt_names}."
        assert truncate_dim in self.config.matryoshka_dims, \
            f"Invalid embedding dimension: {truncate_dim}. Must be one of {self.config.matryoshka_dims}."

        instruction = self.instructions[task][prompt_name]
        sentences = [f'{instruction}{sentence}' for sentence in sentences]
        embeddings = []

        self.eval()

        with torch.inference_mode():
            for batch_of_sentences in batch(sentences, n=batch_size):
                batch_encoded_input = self.tokenizer(
                    batch_of_sentences,
                    padding=True,
                    truncation=True,
                    return_tensors="pt",
                    max_length=max_length
                ).to(self.device)

                batch_sentence_embeddings = self(
                    **batch_encoded_input,
                    output_attentions=False,
                    return_dict=True,
                    max_length=max_length
                )

                batch_sentence_embeddings = batch_sentence_embeddings[:, :truncate_dim]
                batch_sentence_embeddings = torch.nn.functional.normalize(
                    batch_sentence_embeddings, p=2, dim=-1
                ).to("cpu")

                embeddings.append(batch_sentence_embeddings)

        if return_numpy:
             return np.concatenate([b.numpy() for b in embeddings], axis=0)
        return [t for b in embeddings for t in torch.unbind(b, dim=0)]        
        

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path,
        *args,
        **kwargs,
    ):
        """
        Loads a pretrained model.
        """
        if "torch_dtype" not in kwargs:
            kwargs["torch_dtype"] = "auto"
        
        if "attn_implementation" not in kwargs:
            kwargs["attn_implementation"] = "flash_attention_2" if is_flash_attn_2_available() else "sdpa"
        
        model = super().from_pretrained(
            pretrained_model_name_or_path, *args, **kwargs
        )

        model.tokenizer = Qwen2TokenizerFast.from_pretrained(
            pretrained_model_name_or_path,
            trust_remote_code=True
        )

        return model