Update README.md
Browse files
README.md
CHANGED
@@ -57,38 +57,7 @@ The following Python packages are required:
|
|
57 |
</details>
|
58 |
|
59 |
<details>
|
60 |
-
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a
|
61 |
-
|
62 |
-
```python
|
63 |
-
# !pip install transformers>=4.53.0 torch>=2.7.1
|
64 |
-
|
65 |
-
from transformers import AutoModel
|
66 |
-
import torch
|
67 |
-
|
68 |
-
# Initialize the model
|
69 |
-
model = AutoModel.from_pretrained("jinaai/jina-code-embeddings-0.5b", trust_remote_code=True)
|
70 |
-
model.to("cuda")
|
71 |
-
|
72 |
-
# Configure truncate_dim, max_length, batch_size in the encode function if needed
|
73 |
-
|
74 |
-
# Encode query
|
75 |
-
query_embeddings = model.encode(
|
76 |
-
["print hello world in python"],
|
77 |
-
task="nl2code",
|
78 |
-
prompt_name="query",
|
79 |
-
)
|
80 |
-
|
81 |
-
# Encode passage
|
82 |
-
passage_embeddings = model.encode(
|
83 |
-
["print('Hello World!')"],
|
84 |
-
task="nl2code",
|
85 |
-
prompt_name="passage",
|
86 |
-
)
|
87 |
-
```
|
88 |
-
</details>
|
89 |
-
|
90 |
-
<details>
|
91 |
-
<summary> via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a> (using Qwen2Model without trust_remote_code)</summary>
|
92 |
|
93 |
```python
|
94 |
# !pip install transformers>=4.53.0 torch>=2.7.1
|
@@ -96,8 +65,7 @@ passage_embeddings = model.encode(
|
|
96 |
import torch
|
97 |
import torch.nn.functional as F
|
98 |
|
99 |
-
from transformers
|
100 |
-
from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast
|
101 |
|
102 |
INSTRUCTION_CONFIG = {
|
103 |
"nl2code": {
|
@@ -152,8 +120,8 @@ documents = [
|
|
152 |
]
|
153 |
all_inputs = queries + documents
|
154 |
|
155 |
-
tokenizer =
|
156 |
-
model =
|
157 |
|
158 |
batch_dict = tokenizer(
|
159 |
all_inputs,
|
@@ -192,7 +160,8 @@ model = SentenceTransformer(
|
|
192 |
"torch_dtype": torch.bfloat16,
|
193 |
"attn_implementation": "flash_attention_2",
|
194 |
"device_map": "cuda"
|
195 |
-
}
|
|
|
196 |
)
|
197 |
|
198 |
# The queries and documents to embed
|
@@ -211,8 +180,8 @@ document_embeddings = model.encode(documents, prompt_name="nl2code_document")
|
|
211 |
# Compute the (cosine) similarity between the query and document embeddings
|
212 |
similarity = model.similarity(query_embeddings, document_embeddings)
|
213 |
print(similarity)
|
214 |
-
# tensor([[0.
|
215 |
-
# [0.
|
216 |
```
|
217 |
</details>
|
218 |
|
@@ -270,7 +239,6 @@ all_inputs = queries + documents
|
|
270 |
# vLLM embedding model
|
271 |
llm = LLM(
|
272 |
model="jinaai/jina-code-embeddings-0.5b",
|
273 |
-
hf_overrides={"architectures": ["Qwen2ForCausalLM"]},
|
274 |
task="embed"
|
275 |
)
|
276 |
|
|
|
57 |
</details>
|
58 |
|
59 |
<details>
|
60 |
+
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
```python
|
63 |
# !pip install transformers>=4.53.0 torch>=2.7.1
|
|
|
65 |
import torch
|
66 |
import torch.nn.functional as F
|
67 |
|
68 |
+
from transformers import AutoModel, AutoTokenizer
|
|
|
69 |
|
70 |
INSTRUCTION_CONFIG = {
|
71 |
"nl2code": {
|
|
|
120 |
]
|
121 |
all_inputs = queries + documents
|
122 |
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-code-embeddings-0.5b')
|
124 |
+
model = AutoModel.from_pretrained('jinaai/jina-code-embeddings-0.5b')
|
125 |
|
126 |
batch_dict = tokenizer(
|
127 |
all_inputs,
|
|
|
160 |
"torch_dtype": torch.bfloat16,
|
161 |
"attn_implementation": "flash_attention_2",
|
162 |
"device_map": "cuda"
|
163 |
+
},
|
164 |
+
tokenizer_kwargs={"padding_side": "left"},
|
165 |
)
|
166 |
|
167 |
# The queries and documents to embed
|
|
|
180 |
# Compute the (cosine) similarity between the query and document embeddings
|
181 |
similarity = model.similarity(query_embeddings, document_embeddings)
|
182 |
print(similarity)
|
183 |
+
# tensor([[0.8169, 0.1214],
|
184 |
+
# [0.1190, 0.5500]])
|
185 |
```
|
186 |
</details>
|
187 |
|
|
|
239 |
# vLLM embedding model
|
240 |
llm = LLM(
|
241 |
model="jinaai/jina-code-embeddings-0.5b",
|
|
|
242 |
task="embed"
|
243 |
)
|
244 |
|