jina-embeddings-v4 / modeling_colqwen_duo.py
michael-guenther's picture
upload model
d1e5d70
raw
history blame
24.4 kB
import os
import math
import numpy as np
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast
from typing_extensions import Unpack
import torch
from torch import nn
from torch.utils.data import DataLoader
from functools import partial
from PIL import Image
from tqdm import tqdm
from enum import Enum
from transformers import BatchEncoding, BatchFeature
from transformers.modeling_utils import PreTrainedModel
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast
from transformers.models.qwen2_5_vl import Qwen2_5_VLProcessor, Qwen2_5_VLForConditionalGeneration
from transformers.processing_utils import (
AllKwargsForChatTemplate,
ImageInput,
PreTokenizedInput,
TextInput,
VideoInput,
)
from huggingface_hub import snapshot_download
from .configuration_colqwen_duo import ColQwen25DuoConfig
def get_torch_device(device: str = "auto") -> str:
"""
Returns the device (string) to be used by PyTorch.
`device` arg defaults to "auto" which will use:
- "cuda:0" if available
- else "mps" if available
- else "cpu".
"""
if device == "auto":
if torch.cuda.is_available():
device = "cuda:0"
elif torch.backends.mps.is_available(): # for Apple Silicon
device = "mps"
else:
device = "cpu"
logger.info(f"Using device: {device}")
return device
class PromptType(str, Enum):
query = "query"
passage = "passage"
class BaseVisualRetrieverProcessor(ABC):
"""
Base class for visual retriever processors.
"""
@abstractmethod
def process_images(
self,
images: List[Image.Image],
) -> Union[BatchFeature, BatchEncoding]:
pass
@abstractmethod
def process_texts(
self,
texts: List[str],
max_length: int = 50,
suffix: Optional[str] = None,
prefix: Optional[str] = None,
) -> Union[BatchFeature, BatchEncoding]:
pass
@abstractmethod
def score(
self,
qs: List[torch.Tensor],
ps: List[torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
**kwargs,
) -> torch.Tensor:
pass
@staticmethod
def score_single_vector(
qs: List[torch.Tensor],
ps: List[torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
) -> torch.Tensor:
"""
Compute the dot product score for the given single-vector query and passage embeddings.
"""
device = device or get_torch_device("auto")
if len(qs) == 0:
raise ValueError("No queries provided")
if len(ps) == 0:
raise ValueError("No passages provided")
qs_stacked = torch.stack(qs).to(device)
ps_stacked = torch.stack(ps).to(device)
scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked)
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
scores = scores.to(torch.float32)
return scores
@staticmethod
def score_multi_vector(
qs: List[torch.Tensor],
ps: List[torch.Tensor],
batch_size: int = 128,
device: Optional[Union[str, torch.device]] = None,
) -> torch.Tensor:
"""
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
"""
device = device or get_torch_device("auto")
if len(qs) == 0:
raise ValueError("No queries provided")
if len(ps) == 0:
raise ValueError("No passages provided")
scores_list: List[torch.Tensor] = []
for i in range(0, len(qs), batch_size):
scores_batch = []
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to(
device
)
for j in range(0, len(ps), batch_size):
ps_batch = torch.nn.utils.rnn.pad_sequence(
ps[j : j + batch_size], batch_first=True, padding_value=0
).to(device)
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
scores_batch = torch.cat(scores_batch, dim=1).cpu()
scores_list.append(scores_batch)
scores = torch.cat(scores_list, dim=0)
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
scores = scores.to(torch.float32)
return scores
class QwenVLProcessor(ABC):
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[PreTokenizedInput]]] = None,
videos: Optional[VideoInput] = None,
**kwargs,
) -> BatchFeature:
return super().__call__(images=images, text=text, videos=videos, **kwargs) # type: ignore
def apply_chat_template(
self,
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]],
chat_template: Optional[str] = None,
**kwargs: Unpack[AllKwargsForChatTemplate],
) -> str:
return super().apply_chat_template(conversation=conversation, chat_template=chat_template, **kwargs) # type: ignore
class QwenVLEmbeddingProcessorBase(BaseVisualRetrieverProcessor, QwenVLProcessor):
assistant_prefix_len: int = 58 # length of prefix created by
# super().apply_chat_template(conversation=conversation, chat_template=chat_template, **kwargs)
@staticmethod
def round_by_factor(number: float, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
@staticmethod
def ceil_by_factor(number: float, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
@staticmethod
def floor_by_factor(number: float, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def process_images(
self,
images: Union[List[Image.Image], List[List[Image.Image]]],
) -> BatchFeature:
if isinstance(images[0], list):
images = cast(List[List[Image.Image]], images)
text_doc = []
for i in range(len(images)):
conversation = [{"role": "user", "content": [{"type": "image"}] * len(images[i])}]
template = self.apply_chat_template(conversation, add_generation_prompt=False)
text_doc.append(template[self.assistant_prefix_len :])
else:
images = cast(List[Image.Image], images)
text_doc = [
"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"
] * len(images)
# The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt") # type: ignore
# Separate pixel_values for each image
offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
# Pad pixel_values to the same length to be able to make it into a tensor
pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())
max_length = max([len(pv) for pv in pixel_values])
pixel_values = [
torch.cat([pv, torch.zeros((max_length - len(pv), pv.shape[1]), dtype=pv.dtype, device=pv.device)])
for pv in pixel_values
]
batch_doc["pixel_values"] = torch.stack(pixel_values)
return batch_doc
def process_texts(
self,
texts: List[str],
max_length: int = 8192,
suffix: Optional[str] = None,
prefix: Optional[str] = None,
padding: Optional[str] = None,
) -> BatchFeature:
if suffix is None:
suffix = "<pad>" * 10
padded_texts: List[str] = []
for text in texts:
if prefix:
text = f"{prefix}: {text}"
text += suffix
padded_texts.append(text)
text_batch = self(
text=padded_texts,
return_tensors="pt",
padding=padding or "longest",
max_length=max_length,
truncation=True,
)
return text_batch
class ColQwenDuoProcessorBase(QwenVLEmbeddingProcessorBase):
"""
Processor for ColQwenDuo. Mirrors the `ColQwen2Processor` class.
"""
def score(
self,
qs: List[torch.Tensor],
ps: List[torch.Tensor],
vector_type: str,
device: Optional[Union[str, torch.device]] = None,
truncate: Optional[int] = None,
**kwargs,
) -> torch.Tensor:
"""
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
"""
if truncate:
qs = [q[..., :truncate] for q in qs]
ps = [p[..., :truncate] for p in ps]
if vector_type == "single_vector":
return self.score_single_vector(qs, ps, device=device)
elif vector_type == "multi_vector":
return self.score_multi_vector(qs, ps, device=device, **kwargs)
else:
raise ValueError('vector_type must be one of the following: [`single_vector`, `multi_vector`]')
class ColQwen25DuoProcessor(ColQwenDuoProcessorBase, Qwen2_5_VLProcessor):
def __init__(self, *args, **kwargs) -> None:
Qwen2_5_VLProcessor.__init__(self, *args, **kwargs)
@dataclass
class HybridModelOutput:
"""
Base class for the Hybrid Model outputs.
Args:
vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM.
single_vec_emb (torch.Tensor, optional): Single-vector embeddings.
multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings.
"""
vlm_last_hidden_states: Optional[torch.Tensor] = None
single_vec_emb: Optional[torch.Tensor] = None
multi_vec_emb: Optional[torch.Tensor] = None
class EncodeMixin:
"""
Interface to encode data for MTEB and ViDoRe evaluations.
"""
def _process_batches(
self,
data: List[Union[str, Image.Image]],
processor_fn: Callable,
desc: str,
vector_type: Optional[str] = None,
return_numpy: bool = False,
**kwargs,
) -> Union[np.ndarray, List[torch.Tensor]]:
dataloader = DataLoader(
dataset=data,
batch_size=kwargs.get("batch_size", 32),
shuffle=False,
collate_fn=processor_fn,
)
results = []
self.eval()
for batch in tqdm(dataloader, desc=desc):
with torch.no_grad():
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.autocast(device_type=torch.device(self.device).type):
embeddings = self(**batch)
if isinstance(embeddings, HybridModelOutput) and (vector_type == "single_vector"):
embeddings = embeddings.single_vec_emb
elif isinstance(embeddings, HybridModelOutput) and (vector_type == "multi_vector"):
embeddings = embeddings.multi_vec_emb
elif not vector_type and isinstance(embeddings, HybridModelOutput):
embeddings = embeddings.single_vec_emb # get single-vectors for text2text tasks by default
results.append(embeddings.cpu() if return_numpy else list(torch.unbind(embeddings)))
if return_numpy:
return np.concatenate([result.numpy() for result in results], axis=0)
return [item for sublist in results for item in sublist]
def encode(
self,
sentences: List[str],
max_length: int = 8192,
batch_size: int = 8,
prefixes: Optional[List[str]] = None,
desc: Optional[str] = None,
vector_type: Optional[str] = None,
padding: Optional[str] = None,
prompt_type: Optional[PromptType] = None,
**kwargs,
) -> np.ndarray:
prefix = None
if isinstance(prefixes, list) and len(prefixes) > 0:
if prompt_type:
desc = f"MTEB: Encode {prompt_type.value}..."
prefix = prefixes[0] if prompt_type.value == "query" else prefixes[1]
else:
prefix = prefixes[0]
processor_fn = partial(self.processor.process_texts, max_length=max_length, prefix=prefix, padding=padding)
desc = desc or "MTEB: Encode texts..."
return self._process_batches(
data=sentences,
processor_fn=processor_fn,
desc=desc,
vector_type=vector_type,
batch_size=batch_size,
**kwargs,
)
def encode_texts(
self,
queries: List[str],
max_length: int = 8192,
batch_size: int = 8,
vector_type: Optional[str] = None,
desc: Optional[str] = None,
**kwargs,
) -> List[torch.Tensor]:
processor_fn = partial(self.processor.process_texts, max_length=max_length, prefix="Query")
return self._process_batches(
data=queries,
processor_fn=processor_fn,
desc=desc or "Encode queries...",
vector_type=vector_type,
batch_size=batch_size,
**kwargs,
)
def encode_images(
self,
documents: List[Image.Image],
batch_size: int = 8,
vector_type: Optional[str] = None,
desc: Optional[str] = None,
**kwargs,
) -> List[torch.Tensor]:
return self._process_batches(
data=documents,
processor_fn=self.processor.process_images,
desc=desc or "Encode documents...",
vector_type=vector_type,
batch_size=batch_size,
**kwargs,
)
class QwenVLModel(ABC):
def get_rope_index(
self,
input_ids: torch.LongTensor,
image_grid_thw: Union[torch.LongTensor, None],
attention_mask: torch.Tensor,
) -> tuple[torch.LongTensor, torch.Tensor]:
return super().get_rope_index( # type: ignore
input_ids=input_ids,
image_grid_thw=image_grid_thw,
attention_mask=attention_mask,
)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
position_ids: torch.LongTensor,
rope_deltas: torch.Tensor,
output_hidden_states: bool,
use_cache: bool,
**kwargs,
) -> Qwen2VLCausalLMOutputWithPast:
return super().forward( # type: ignore
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
rope_deltas=rope_deltas,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
**kwargs,
)
class QwenVLEmbeddingBase(EncodeMixin, QwenVLModel):
main_input_name: ClassVar[str] = "doc_input_ids"
def get_vlm_last_hidden_states(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
**kwargs,
) -> torch.Tensor:
if "pixel_values" in kwargs:
offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2]
kwargs["pixel_values"] = torch.cat([pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0)
position_ids, rope_deltas = self.get_rope_index(
input_ids=input_ids,
image_grid_thw=kwargs.get("image_grid_thw", None),
attention_mask=attention_mask,
)
outputs = super().forward(
input_ids,
attention_mask,
**kwargs,
position_ids=position_ids,
rope_deltas=rope_deltas,
output_hidden_states=True,
use_cache=False,
)
hidden_states = outputs.hidden_states
if not hidden_states:
raise ValueError("Hidden states not found in model output")
return hidden_states[-1]
class AbstractHybridModel(ABC):
"""
Abstract class for a hybrid model (single-vector and multi-vector embeddings).
"""
@property
def single_vector_projector_dim(self) -> int:
return self.config.single_vector_projector_dim
@property
def multi_vector_projector_dim(self) -> int:
return self.config.multi_vector_projector_dim
@abstractmethod
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
output_vlm_last_hidden_states: bool = False,
*args,
**kwargs,
) -> HybridModelOutput:
"""
Forward pass through the model. Returns both single-vector and multi-vector embeddings.
Must be implemented by subclasses.
"""
pass
def _init_projection_layers(self, config) -> None:
"""
Initializes projection layers.
"""
self.config.single_vector_projector_dim = config.single_vector_projector_dim
self.config.multi_vector_projector_dim = config.multi_vector_projector_dim
self.single_vector_projector = nn.Linear(
in_features=self.config.hidden_size,
out_features=self.config.single_vector_projector_dim,
)
self.multi_vector_projector = nn.Linear(
in_features=self.config.hidden_size,
out_features=self.config.multi_vector_projector_dim,
)
@staticmethod
def _delete_redundant_forward_kwargs(kwargs: Dict[str, Any]) -> None:
"""
Delete redundant kwargs before passing them to the forward method. In-place operation.
"""
for key in ["input_ids", "attention_mask", "output_hidden_states"]:
kwargs.pop(key, None)
def project_to_single_vector_embeddings(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
input_ids: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
"""
Project the hidden states to single-vector embeddings.
"""
pooling_method = self.config.single_vector_pool_strategy
if pooling_method == "mean" and input_ids is None:
print("Warning: `input_ids` is None. Using `legacy-mean` pooling strategy instead.")
pooling_method = "legacy-mean"
if pooling_method == "last-token":
pooled_output = hidden_states[:, -1, :]
elif pooling_method == "mean":
if self._input_has_image(input_ids[0]): # got document image(s)
# getting start and end positions of image tokens; torch.where returns
# (1) a list of indices of input sequences
# (shape corresponds to the total number of images in the batch)
# (2) a list of positions of image tokens in the input sequence
# (shape corresponds to the total number of images in the batch)
input_seq_idx, img_start_pos = torch.where(
input_ids == self.config.vision_start_token_id
) # (total number of images), (total number of images)
_, img_end_pos = torch.where(
input_ids == self.config.vision_end_token_id
) # (total number of images), (total number of images)
means = []
for i in range(input_seq_idx.shape[0]):
vector_pos = input_seq_idx[i]
start = img_start_pos[i]
end = img_end_pos[i]
mean_value = hidden_states[vector_pos][start : end + 1].mean(dim=0)
means.append(mean_value)
pooled_output = torch.stack(means)
else: # got query text
pooled_output = torch.sum(hidden_states * attention_mask.unsqueeze(-1), dim=1) / torch.sum(
attention_mask, dim=1, keepdim=True
)
elif pooling_method == "legacy-mean":
pooled_output = torch.sum(hidden_states * attention_mask.unsqueeze(-1), dim=1) / torch.sum(
attention_mask, dim=1, keepdim=True
)
else:
raise ValueError(f"Invalid pooling strategy: {pooling_method}")
single_vec_emb = self.single_vector_projector(pooled_output)
return torch.nn.functional.normalize(single_vec_emb, dim=-1)
def project_to_multi_vector_embeddings(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
"""
Project the hidden states to multi-vector embeddings.
"""
multi_vec_emb = self.multi_vector_projector(hidden_states)
multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
return multi_vec_emb * attention_mask.unsqueeze(-1)
def _input_has_image(self, input_ids):
return self.config.vision_start_token_id in input_ids
class ColQwenDuoBase(AbstractHybridModel, QwenVLEmbeddingBase):
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
output_vlm_last_hidden_states: bool = False,
**kwargs,
) -> HybridModelOutput:
"""
Forward pass through ColQwenDuo. Returns both single-vector and multi-vector embeddings.
Args:
input_ids (torch.LongTensor): The input tokens tensor.
attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
HybridModelOutput:
single_vector (torch.Tensor): Single-vector embeddings of shape (batch_size, dim).
multi_vector (torch.Tensor): Multi-vector embeddings of shape (batch_size, num_tokens, dim).
"""
# Delete redundant kwargs
self._delete_redundant_forward_kwargs(kwargs)
# Forward pass through the VLM
hidden_states = self.get_vlm_last_hidden_states(
input_ids=input_ids, attention_mask=attention_mask, **kwargs
) # (batch_size, seq_length, hidden_size)
# Compute the embeddings
single_vec_emb = self.project_to_single_vector_embeddings(hidden_states, attention_mask, input_ids=input_ids)
multi_vec_emb = self.project_to_multi_vector_embeddings(hidden_states, attention_mask)
return HybridModelOutput(
vlm_last_hidden_states=hidden_states if output_vlm_last_hidden_states else None,
single_vec_emb=single_vec_emb,
multi_vec_emb=multi_vec_emb,
)
class ColQwen25Duo(ColQwenDuoBase, Qwen2_5_VLForConditionalGeneration):
config_class = ColQwen25DuoConfig
def __init__(self, config: ColQwen25DuoConfig):
Qwen2_5_VLForConditionalGeneration.__init__(self, config)
self._init_projection_layers(config)
self.post_init()
self.processor = ColQwen25DuoProcessor.from_pretrained(self.name_or_path, trust_remote_code=True)
@classmethod
def from_pretrained(
cls,
*args,
**kwargs,
):
if not "torch_dtype" in kwargs:
kwargs["torch_dtype"] = "auto"
model = super().from_pretrained(*args, **kwargs)
if model.config.pretrained_peft_model_name_or_path:
if os.path.isdir(model.name_or_path):
model.load_adapter(f'{model.name_or_path}/{model.config.pretrained_peft_model_name_or_path}')
else:
adapter_cache_path = snapshot_download(
repo_id=model.name_or_path,
allow_patterns=[os.path.join(model.config.pretrained_peft_model_name_or_path, '*')] # Only download files in adapter/
)
adapter_path = os.path.join(adapter_cache_path, model.config.pretrained_peft_model_name_or_path)
model.load_adapter(adapter_path)
return model