Rolema 7B

Rolema 7B is a large language model that works effectively under a 4-bit quantization process. Rolema 7B is based on the backbone of the Gemma-7B model by Google.

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Min Si Thu
  • Model type: Text Generation Large Language Model
  • Language(s) (NLP): English
  • License: MIT

How to use

Installing Libraries

%%capture 
%pip install -U bitsandbytes 
%pip install -U transformers 
%pip install -U peft 
%pip install -U accelerate 
%pip install -U trl
%pip install -U datasets

Code Implementation

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel, PeftConfig

base_model = "google/gemma-7b-it"
adapter_model = "jojo-ai-mst/rolema-7b-it"

# Load base model(Gemma 7B-it)
bnbConfig = BitsAndBytesConfig(
    load_in_4bit = True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

model = AutoModelForCausalLM.from_pretrained(base_model,quantization_config=bnbConfig,) # device_map="auto" autosplit for cuda
model = PeftModel.from_pretrained(model, adapter_model)
tokenizer = AutoTokenizer.from_pretrained(base_model)

model = model.to("cuda")

inputs = tokenizer("How to learn programming", return_tensors="pt")

inputs = inputs.to("cuda")

outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=1000)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.