Upload food embeddings model
Browse files- README.md +45 -45
- model.safetensors +1 -1
README.md
CHANGED
@@ -4,35 +4,35 @@ tags:
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
-
- dataset_size:
|
8 |
- loss:ContrastiveLoss
|
9 |
base_model: sentence-transformers/all-mpnet-base-v2
|
10 |
widget:
|
11 |
-
- source_sentence:
|
12 |
sentences:
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
- source_sentence:
|
17 |
sentences:
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
- source_sentence:
|
22 |
sentences:
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
- source_sentence:
|
27 |
sentences:
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
31 |
-
- source_sentence:
|
32 |
sentences:
|
33 |
-
-
|
34 |
-
-
|
35 |
-
-
|
36 |
pipeline_tag: sentence-similarity
|
37 |
library_name: sentence-transformers
|
38 |
metrics:
|
@@ -49,10 +49,10 @@ model-index:
|
|
49 |
type: validation
|
50 |
metrics:
|
51 |
- type: pearson_cosine
|
52 |
-
value: 0.
|
53 |
name: Pearson Cosine
|
54 |
- type: spearman_cosine
|
55 |
-
value: 0.
|
56 |
name: Spearman Cosine
|
57 |
---
|
58 |
|
@@ -106,9 +106,9 @@ from sentence_transformers import SentenceTransformer
|
|
106 |
model = SentenceTransformer("jonny9f/food_embeddings4")
|
107 |
# Run inference
|
108 |
sentences = [
|
109 |
-
'
|
110 |
-
'
|
111 |
-
'
|
112 |
]
|
113 |
embeddings = model.encode(sentences)
|
114 |
print(embeddings.shape)
|
@@ -153,10 +153,10 @@ You can finetune this model on your own dataset.
|
|
153 |
* Dataset: `validation`
|
154 |
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
155 |
|
156 |
-
| Metric | Value
|
157 |
-
|
158 |
-
| pearson_cosine | 0.
|
159 |
-
| **spearman_cosine** | **0.
|
160 |
|
161 |
<!--
|
162 |
## Bias, Risks and Limitations
|
@@ -177,19 +177,19 @@ You can finetune this model on your own dataset.
|
|
177 |
#### Unnamed Dataset
|
178 |
|
179 |
|
180 |
-
* Size:
|
181 |
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
182 |
* Approximate statistics based on the first 1000 samples:
|
183 |
-
| | sentence_0
|
184 |
-
|
185 |
-
| type | string
|
186 |
-
| details | <ul><li>min: 3 tokens</li><li>mean:
|
187 |
* Samples:
|
188 |
-
| sentence_0
|
189 |
-
|
190 |
-
| <code>
|
191 |
-
| <code>
|
192 |
-
| <code>
|
193 |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
194 |
```json
|
195 |
{
|
@@ -202,8 +202,8 @@ You can finetune this model on your own dataset.
|
|
202 |
### Training Hyperparameters
|
203 |
#### Non-Default Hyperparameters
|
204 |
|
205 |
-
- `per_device_train_batch_size`:
|
206 |
-
- `per_device_eval_batch_size`:
|
207 |
- `num_train_epochs`: 1
|
208 |
- `multi_dataset_batch_sampler`: round_robin
|
209 |
|
@@ -214,8 +214,8 @@ You can finetune this model on your own dataset.
|
|
214 |
- `do_predict`: False
|
215 |
- `eval_strategy`: no
|
216 |
- `prediction_loss_only`: True
|
217 |
-
- `per_device_train_batch_size`:
|
218 |
-
- `per_device_eval_batch_size`:
|
219 |
- `per_gpu_train_batch_size`: None
|
220 |
- `per_gpu_eval_batch_size`: None
|
221 |
- `gradient_accumulation_steps`: 1
|
@@ -331,7 +331,7 @@ You can finetune this model on your own dataset.
|
|
331 |
### Training Logs
|
332 |
| Epoch | Step | validation_spearman_cosine |
|
333 |
|:-----:|:----:|:--------------------------:|
|
334 |
-
| 1.0 |
|
335 |
|
336 |
|
337 |
### Framework Versions
|
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
+
- dataset_size:35819
|
8 |
- loss:ContrastiveLoss
|
9 |
base_model: sentence-transformers/all-mpnet-base-v2
|
10 |
widget:
|
11 |
+
- source_sentence: Broccoli, stalks raw
|
12 |
sentences:
|
13 |
+
- Carrots, canned no salt
|
14 |
+
- Squash, Indian raw
|
15 |
+
- Biscuit, Popeyes
|
16 |
+
- source_sentence: Cereal, General Mills Cheerios
|
17 |
sentences:
|
18 |
+
- Chocolate pudding, ready-to-eat
|
19 |
+
- Mackerel, Atlantic cooked
|
20 |
+
- Cereal, Malt-O-Meal Berry Colossal Crunch
|
21 |
+
- source_sentence: Beef Tenderloin, lean cooked broiled
|
22 |
sentences:
|
23 |
+
- Elk, tenderloin lean cooked broiled
|
24 |
+
- Chicken, capons giblets cooked simmered
|
25 |
+
- Barley, pearled cooked
|
26 |
+
- source_sentence: Beef, New Zealand eye round slow roasted
|
27 |
sentences:
|
28 |
+
- Sorghum flour, white pearled raw
|
29 |
+
- Beef, Denver cut steak, grilled
|
30 |
+
- Pudding, chocolate instant with 2% milk
|
31 |
+
- source_sentence: Beef, shoulder steak boneless grilled
|
32 |
sentences:
|
33 |
+
- Pork, bacon, cooked pan-fried
|
34 |
+
- Oyster, eastern breaded fried
|
35 |
+
- Beef, top blade steak, grilled select
|
36 |
pipeline_tag: sentence-similarity
|
37 |
library_name: sentence-transformers
|
38 |
metrics:
|
|
|
49 |
type: validation
|
50 |
metrics:
|
51 |
- type: pearson_cosine
|
52 |
+
value: 0.8767870213264454
|
53 |
name: Pearson Cosine
|
54 |
- type: spearman_cosine
|
55 |
+
value: 0.8665397416848721
|
56 |
name: Spearman Cosine
|
57 |
---
|
58 |
|
|
|
106 |
model = SentenceTransformer("jonny9f/food_embeddings4")
|
107 |
# Run inference
|
108 |
sentences = [
|
109 |
+
'Beef, shoulder steak boneless grilled',
|
110 |
+
'Beef, top blade steak, grilled select',
|
111 |
+
'Pork, bacon, cooked pan-fried',
|
112 |
]
|
113 |
embeddings = model.encode(sentences)
|
114 |
print(embeddings.shape)
|
|
|
153 |
* Dataset: `validation`
|
154 |
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
155 |
|
156 |
+
| Metric | Value |
|
157 |
+
|:--------------------|:-----------|
|
158 |
+
| pearson_cosine | 0.8768 |
|
159 |
+
| **spearman_cosine** | **0.8665** |
|
160 |
|
161 |
<!--
|
162 |
## Bias, Risks and Limitations
|
|
|
177 |
#### Unnamed Dataset
|
178 |
|
179 |
|
180 |
+
* Size: 35,819 training samples
|
181 |
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
182 |
* Approximate statistics based on the first 1000 samples:
|
183 |
+
| | sentence_0 | sentence_1 | label |
|
184 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
185 |
+
| type | string | string | float |
|
186 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 10.09 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.88 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 0.85</li></ul> |
|
187 |
* Samples:
|
188 |
+
| sentence_0 | sentence_1 | label |
|
189 |
+
|:---------------------------------------------------------------|:-------------------------------------------------------|:--------------------------------|
|
190 |
+
| <code>Instant Oats, maple and brown sugar fortified dry</code> | <code>Chocolate frosting, creamy dry mix</code> | <code>0.0</code> |
|
191 |
+
| <code>Fried Chicken Breast, meat only extra crispy KFC</code> | <code>Brothers Natural Fruit Crisps Strawberry</code> | <code>0.0</code> |
|
192 |
+
| <code>Sesame seed dressing, regular</code> | <code>Italian dressing, fat-free salad dressing</code> | <code>0.7745922088623046</code> |
|
193 |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
194 |
```json
|
195 |
{
|
|
|
202 |
### Training Hyperparameters
|
203 |
#### Non-Default Hyperparameters
|
204 |
|
205 |
+
- `per_device_train_batch_size`: 128
|
206 |
+
- `per_device_eval_batch_size`: 128
|
207 |
- `num_train_epochs`: 1
|
208 |
- `multi_dataset_batch_sampler`: round_robin
|
209 |
|
|
|
214 |
- `do_predict`: False
|
215 |
- `eval_strategy`: no
|
216 |
- `prediction_loss_only`: True
|
217 |
+
- `per_device_train_batch_size`: 128
|
218 |
+
- `per_device_eval_batch_size`: 128
|
219 |
- `per_gpu_train_batch_size`: None
|
220 |
- `per_gpu_eval_batch_size`: None
|
221 |
- `gradient_accumulation_steps`: 1
|
|
|
331 |
### Training Logs
|
332 |
| Epoch | Step | validation_spearman_cosine |
|
333 |
|:-----:|:----:|:--------------------------:|
|
334 |
+
| 1.0 | 280 | 0.8665 |
|
335 |
|
336 |
|
337 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d1cb1586ee53cc57a2af6f1c1b763aa44287d52636dcd9d832e724a9f9fec6f
|
3 |
size 437967672
|