Built with Axolotl

See axolotl config

axolotl version: 0.4.0

adapter: null
base_model: NousResearch/Llama-2-7b-hf
bf16: auto
dataset_prepared_path: last_run_prepared
datasets:
- path: mhenrichsen/alpaca_2k_test
  type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_batch_size: 1
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_fuse_mlp: true
flash_attn_fuse_qkv: false
flash_attn_rms_norm: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: null
lora_dropout: null
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: null
lora_target_linear: null
lr_scheduler: cosine
micro_batch_size: 1
model_type: LlamaForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sequence_len: 1024
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 100
weight_decay: 0.1
xformers_attention: null

out

This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7538

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.9994 0.0 1 1.0350
2.065 0.25 116 5.2362
1.9585 0.5 232 2.3424
2.7503 0.75 348 1.8830
1.5434 1.0 464 1.7538

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.0
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for joseagmz/out

Finetuned
(64)
this model