jpacifico/Chocolatine-2-14B-Instruct-v2.0.3-Q4_K_M-GGUF

Quantized Q4_K_M GGUF version of the original model Chocolatine-2-14B-Instruct-v2.0.3
can be used on a CPU device, compatible llama.cpp
Supported architecture by LM Studio.

Ollama

Previously install Ollama.

Usage:

ollama create chocolatine-2 -f Modelfile_chocolatine-2-q4
ollama run chocolatine-2

Ollama Modelfile example :

FROM ./chocolatine-2-14b-instruct-v2.0.3-q4_k_m.gguf
TEMPLATE """
{{- if .Suffix }}<|fim_prefix|>{{ .Prompt }}<|fim_suffix|>{{ .Suffix }}<|fim_middle|>
{{- else if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{- if .System }}
{{ .System }}
{{- end }}
{{- if .Tools }}

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}
{{- end }}
</tools>

For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{ else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}
{{- else }}
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}{{ .Response }}{{ if .Response }}<|im_end|>{{ end }}

"""
SYSTEM """Tu es Chocolatine, un assistant IA serviable et bienveillant. Tu fais des réponses concises et précises."""

Limitations

The Chocolatine-2 model series is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.

  • Developed by: Jonathan Pacifico, 2025
  • Model type: LLM
  • Language(s) (NLP): French, English
  • License: Apache-2.0

Made with ❤️ in France

Downloads last month
34
GGUF
Model size
14.8B params
Architecture
qwen2

4-bit

Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for jpacifico/Chocolatine-2-14B-Instruct-v2.0.3-Q4_K_M-GGUF

Quantized
(5)
this model

Dataset used to train jpacifico/Chocolatine-2-14B-Instruct-v2.0.3-Q4_K_M-GGUF

Collection including jpacifico/Chocolatine-2-14B-Instruct-v2.0.3-Q4_K_M-GGUF