See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: Xenova/tiny-random-Phi3ForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- faee7c55ed6ea8a4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/faee7c55ed6ea8a4_train_data.json
type:
field_input: content
field_instruction: title
field_output: abstract
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: true
hub_model_id: jssky/910e0b83-865b-4e0a-a849-addd86b4d8de
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/faee7c55ed6ea8a4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ce5659db-8c38-4285-b7dc-407731d10924
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ce5659db-8c38-4285-b7dc-407731d10924
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
910e0b83-865b-4e0a-a849-addd86b4d8de
This model is a fine-tuned version of Xenova/tiny-random-Phi3ForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.2723
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.293 | 0.0411 | 375 | 10.2888 |
10.268 | 0.0822 | 750 | 10.2771 |
10.2795 | 0.1233 | 1125 | 10.2730 |
10.2746 | 0.1644 | 1500 | 10.2723 |
Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for jssky/910e0b83-865b-4e0a-a849-addd86b4d8de
Base model
Xenova/tiny-random-Phi3ForCausalLM