Model Description

YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported.

YOLOXDetect-Pip: This repo is a packaged version of the YOLOX for easy installation and use.

[Paper Repo]: Implementation of paper - YOLOX

Installation

pip install yoloxdetect

Yolox Inference

from yoloxdetect import YoloxDetector
from yolox.data.datasets import COCO_CLASSES
model = YoloxDetector(
    model_path = "kadirnar/yolox_x-v0.1.1",
    config_path = "configs.yolox_x",
    device = "cuda:0",
    hf_model=True
)
model.classes = COCO_CLASSES
model.conf = 0.25
model.iou = 0.45
model.show = False
model.save = True
pred = model.predict(image='data/images', img_size=640)

BibTeX Entry and Citation Info

@article{yolox2021,
 title={YOLOX: Exceeding YOLO Series in 2021},
 author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
 journal={arXiv preprint arXiv:2107.08430},
 year={2021}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train kadirnar/yolox_x-v0.1.1