layoutlmv3-finetuned
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3160
- Precision: 0.8865
- Recall: 0.8880
- F1: 0.8872
- Accuracy: 0.9313
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.3155 | 100 | 0.3799 | 0.8272 | 0.8281 | 0.8276 | 0.8989 |
No log | 0.6309 | 200 | 0.3640 | 0.8102 | 0.8403 | 0.825 | 0.8976 |
No log | 0.9464 | 300 | 0.3647 | 0.8169 | 0.8445 | 0.8305 | 0.8983 |
No log | 1.2618 | 400 | 0.3327 | 0.8465 | 0.8486 | 0.8475 | 0.9095 |
0.3176 | 1.5773 | 500 | 0.3260 | 0.8389 | 0.8509 | 0.8449 | 0.9106 |
0.3176 | 1.8927 | 600 | 0.3263 | 0.8450 | 0.8489 | 0.8469 | 0.9090 |
0.3176 | 2.2082 | 700 | 0.3157 | 0.8531 | 0.8593 | 0.8562 | 0.9165 |
0.3176 | 2.5237 | 800 | 0.3015 | 0.8532 | 0.8665 | 0.8598 | 0.9157 |
0.3176 | 2.8391 | 900 | 0.2953 | 0.8486 | 0.8644 | 0.8565 | 0.9170 |
0.2295 | 3.1546 | 1000 | 0.3092 | 0.8611 | 0.8731 | 0.8671 | 0.9191 |
0.2295 | 3.4700 | 1100 | 0.2928 | 0.8707 | 0.8695 | 0.8701 | 0.9227 |
0.2295 | 3.7855 | 1200 | 0.2885 | 0.8650 | 0.8725 | 0.8688 | 0.9230 |
0.2295 | 4.1009 | 1300 | 0.2968 | 0.8727 | 0.8717 | 0.8722 | 0.9221 |
0.2295 | 4.4164 | 1400 | 0.3031 | 0.8654 | 0.8714 | 0.8684 | 0.9201 |
0.1703 | 4.7319 | 1500 | 0.3076 | 0.8628 | 0.8725 | 0.8676 | 0.9188 |
0.1703 | 5.0473 | 1600 | 0.2884 | 0.8791 | 0.8710 | 0.8751 | 0.9251 |
0.1703 | 5.3628 | 1700 | 0.3150 | 0.8669 | 0.8763 | 0.8716 | 0.9216 |
0.1703 | 5.6782 | 1800 | 0.3061 | 0.8634 | 0.8812 | 0.8722 | 0.9232 |
0.1703 | 5.9937 | 1900 | 0.2930 | 0.8776 | 0.8785 | 0.8780 | 0.9264 |
0.1333 | 6.3091 | 2000 | 0.3095 | 0.8726 | 0.8804 | 0.8765 | 0.9255 |
0.1333 | 6.6246 | 2100 | 0.2997 | 0.8757 | 0.8801 | 0.8779 | 0.9262 |
0.1333 | 6.9401 | 2200 | 0.3002 | 0.8783 | 0.8801 | 0.8792 | 0.9278 |
0.1333 | 7.2555 | 2300 | 0.2980 | 0.8795 | 0.8837 | 0.8816 | 0.9289 |
0.1333 | 7.5710 | 2400 | 0.3057 | 0.8813 | 0.8822 | 0.8818 | 0.9282 |
0.1112 | 7.8864 | 2500 | 0.3050 | 0.8799 | 0.8791 | 0.8795 | 0.9280 |
0.1112 | 8.2019 | 2600 | 0.3030 | 0.8819 | 0.8819 | 0.8819 | 0.9296 |
0.1112 | 8.5174 | 2700 | 0.3190 | 0.8664 | 0.8831 | 0.8747 | 0.9249 |
0.1112 | 8.8328 | 2800 | 0.3137 | 0.8821 | 0.8822 | 0.8821 | 0.9283 |
0.1112 | 9.1483 | 2900 | 0.3110 | 0.8883 | 0.8820 | 0.8851 | 0.9308 |
0.0895 | 9.4637 | 3000 | 0.3184 | 0.8769 | 0.8851 | 0.8809 | 0.9283 |
0.0895 | 9.7792 | 3100 | 0.3067 | 0.8769 | 0.8891 | 0.8829 | 0.9294 |
0.0895 | 10.0946 | 3200 | 0.3161 | 0.8819 | 0.8871 | 0.8845 | 0.9306 |
0.0895 | 10.4101 | 3300 | 0.3251 | 0.8762 | 0.8874 | 0.8818 | 0.9280 |
0.0895 | 10.7256 | 3400 | 0.3123 | 0.8863 | 0.8851 | 0.8857 | 0.9309 |
0.0788 | 11.0410 | 3500 | 0.3160 | 0.8865 | 0.8880 | 0.8872 | 0.9313 |
0.0788 | 11.3565 | 3600 | 0.3205 | 0.8835 | 0.8870 | 0.8852 | 0.9303 |
0.0788 | 11.6719 | 3700 | 0.3249 | 0.8798 | 0.8900 | 0.8849 | 0.9297 |
0.0788 | 11.9874 | 3800 | 0.3192 | 0.8833 | 0.8874 | 0.8853 | 0.9300 |
0.0788 | 12.3028 | 3900 | 0.3192 | 0.8838 | 0.8889 | 0.8864 | 0.9303 |
0.069 | 12.6183 | 4000 | 0.3201 | 0.8824 | 0.8895 | 0.8859 | 0.9299 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 36
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for kaydee/layoutlmv3-finetuned
Base model
microsoft/layoutlmv3-base