See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5f8654d7dffb04f1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5f8654d7dffb04f1_train_data.json
type:
field_instruction: hotel_name
field_output: review
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso03/c25a6821-70d3-41d9-b043-200034ef0df0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000203
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/5f8654d7dffb04f1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 30
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b415b3f6-af8a-4f59-9af5-e740f06ff31a
wandb_project: 03a
wandb_run: your_name
wandb_runid: b415b3f6-af8a-4f59-9af5-e740f06ff31a
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
c25a6821-70d3-41d9-b043-200034ef0df0
This model is a fine-tuned version of Orenguteng/Llama-3-8B-Lexi-Uncensored on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.0769
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000203
- train_batch_size: 4
- eval_batch_size: 4
- seed: 30
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0000 | 1 | 5.9809 |
3.3493 | 0.0008 | 50 | 3.9901 |
3.3414 | 0.0016 | 100 | 4.5192 |
3.2167 | 0.0025 | 150 | 3.9509 |
3.0858 | 0.0033 | 200 | 3.7704 |
3.2158 | 0.0041 | 250 | 3.6252 |
3.219 | 0.0049 | 300 | 3.3669 |
3.3171 | 0.0057 | 350 | 3.1540 |
3.2356 | 0.0065 | 400 | 3.0867 |
3.3164 | 0.0074 | 450 | 3.0814 |
2.9763 | 0.0082 | 500 | 3.0769 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso03/c25a6821-70d3-41d9-b043-200034ef0df0
Base model
Orenguteng/Llama-3-8B-Lexi-Uncensored