Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: katuni4ka/tiny-random-falcon-40b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 106498e28a9833d4_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/106498e28a9833d4_train_data.json
  type:
    field_input: plan
    field_instruction: problem
    field_output: solution
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso12/357cf207-94c1-4727-83e8-a3df92021a25
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000212
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/106498e28a9833d4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 120
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0ad3d12c-5ef6-4109-a686-98f01ee6610b
wandb_project: 12a
wandb_run: your_name
wandb_runid: 0ad3d12c-5ef6-4109-a686-98f01ee6610b
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

357cf207-94c1-4727-83e8-a3df92021a25

This model is a fine-tuned version of katuni4ka/tiny-random-falcon-40b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.4875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000212
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 120
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0009 1 11.1210
21.7714 0.0434 50 10.8178
21.3436 0.0868 100 10.6548
21.2468 0.1302 150 10.6071
21.1852 0.1736 200 10.5626
21.1424 0.2170 250 10.5307
21.0647 0.2604 300 10.5109
21.1159 0.3038 350 10.4972
21.0575 0.3472 400 10.4896
21.0216 0.3906 450 10.4908
21.0878 0.4340 500 10.4875

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso12/357cf207-94c1-4727-83e8-a3df92021a25

Adapter
(293)
this model