Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: unsloth/SmolLM-360M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 5310493f33510263_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5310493f33510263_train_data.json
  type:
    field_input: context
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso18/e1e7cc4a-cca8-4d42-ba03-363eed235dce
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000218
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/5310493f33510263_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 180
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6732d9b8-41df-4e01-b7e1-c3e380682bdc
wandb_project: 18a
wandb_run: your_name
wandb_runid: 6732d9b8-41df-4e01-b7e1-c3e380682bdc
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

e1e7cc4a-cca8-4d42-ba03-363eed235dce

This model is a fine-tuned version of unsloth/SmolLM-360M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000218
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 180
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 1.3260
0.6393 0.0110 50 0.6431
0.4936 0.0220 100 0.5471
0.4773 0.0331 150 0.5104
0.4227 0.0441 200 0.4669
0.3981 0.0551 250 0.4423
0.3539 0.0661 300 0.4205
0.3224 0.0771 350 0.4051
0.361 0.0882 400 0.3956
0.3949 0.0992 450 0.3931
0.4003 0.1102 500 0.3908

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso18/e1e7cc4a-cca8-4d42-ba03-363eed235dce

Adapter
(304)
this model