O->ConBART document simplification system

This is a pretrained version of the document simplification model presented in the Findings of ACL 2023 paper "Context-Aware Document Simplification".

It is a system based on a modification to the BART architecture and operates on individual sentences. It is intended to be guided by a document-level simplification planner.

Target reading levels (1-4) should be indicated via a control token prepended to each input sequence ("<RL_1>", "<RL_2>", "<RL_3>", "<RL_4>"). If using the terminal interface, this will be handled automatically.

How to use

It is recommended to use the plan_simp library to interface with the model.

Here is how to use this model in PyTorch:

from plan_simp.models.bart import load_simplifier

simplifier, tokenizer, hparams = load_simplifier("liamcripwell/o-conbart")

# dynamic plan-guided generation
from plan_simp.scripts.generate import Launcher
launcher = Launcher()
launcher.dynamic(model_ckpt="liamcripwell/o-conbart", clf_model_ckpt="liamcripwell/pgdyn-plan", **params)

Generation and evaluation can also be run from the terminal.

python plan_simp/scripts/generate.py dynamic
  --clf_model_ckpt=liamcripwell/pgdyn-plan
  --model_ckpt=liamcripwell/o-conbart
  --test_file=<test_data>
  --doc_id_col=pair_id
  --context_dir=<context_dir>
  --reading_lvl=s_level
  --context_doc_id=c_id
  --out_file=<output_csv>


python plan_simp/scripts/eval_simp.py
    --input_data=newselaauto_docs_test.csv
    --output_data=test_out_oconbart.csv
    --x_col=complex_str
    --r_col=simple_str
    --y_col=pred
    --doc_id_col=pair_id
    --prepro=True
    --sent_level=True
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.