FreeDA: Training-Free Open-Vocabulary Segmentation with Offline Diffusion-Augmented Prototype Generation (CVPR 2024)

Luca Barsellotti*โ€‚ Roberto Amoroso*โ€‚ Marcella Corniaโ€‚ Lorenzo Baraldiโ€‚ Rita Cucchiaraโ€‚

Project Page | Paper | Code

Qualitative results

Method

FreeDA method

Additional qualitative examples

Additional qualitative results

Additional examples in-the-wild

In-the-wild examples

Installation

conda create --name freeda python=3.9
conda activate freeda
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt

How to use

import freeda
from PIL import Image
import requests
from io import BytesIO

if __name__ == "__main__":
    fr = freeda.load("dinov2_vitb_clip_vitb")
    response1 = requests.get("https://farm9.staticflickr.com/8306/7926031760_b313dca06a_z.jpg")
    img1 = Image.open(BytesIO(response1.content))
    response2 = requests.get("https://farm3.staticflickr.com/2207/2157810040_4883738d2d_z.jpg")
    img2 = Image.open(BytesIO(response2.content))
    fr.set_categories(["cat", "table", "pen", "keyboard", "toilet", "wall"])
    fr.set_images([img1, img2])
    segmentation = fr()
    fr.visualize(segmentation, ["plot.png", "plot1.png"])

If you find FreeDA useful for your work please cite:

@inproceedings{barsellotti2024training
  title={Training-Free Open-Vocabulary Segmentation with Offline Diffusion-Augmented Prototype Generation},
  author={Barsellotti, Luca and Amoroso, Roberto and Cornia, Marcella and Baraldi, Lorenzo and Cucchiara, Rita},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2024}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for lucabarsellotti/freeda

Finetuned
(1)
this model