mahitha-t commited on
Commit
b1536d5
·
verified ·
1 Parent(s): ed6294c

Push model using huggingface_hub.

Browse files
Files changed (3) hide show
  1. README.md +50 -5
  2. model.safetensors +1 -1
  3. model_head.pkl +1 -1
README.md CHANGED
@@ -4,17 +4,23 @@ tags:
4
  - sentence-transformers
5
  - text-classification
6
  - generated_from_setfit_trainer
7
- widget: []
 
 
 
 
 
8
  metrics:
9
  - accuracy
10
  pipeline_tag: text-classification
11
  library_name: setfit
12
  inference: true
 
13
  ---
14
 
15
- # SetFit
16
 
17
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
18
 
19
  The model has been trained using an efficient few-shot learning technique that involves:
20
 
@@ -25,7 +31,7 @@ The model has been trained using an efficient few-shot learning technique that i
25
 
26
  ### Model Description
27
  - **Model Type:** SetFit
28
- <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
29
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
30
  - **Maximum Sequence Length:** 512 tokens
31
  - **Number of Classes:** 2 classes
@@ -39,6 +45,12 @@ The model has been trained using an efficient few-shot learning technique that i
39
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
40
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
41
 
 
 
 
 
 
 
42
  ## Uses
43
 
44
  ### Direct Use for Inference
@@ -57,7 +69,7 @@ from setfit import SetFitModel
57
  # Download from the 🤗 Hub
58
  model = SetFitModel.from_pretrained("mahitha-t/text_classification_model")
59
  # Run inference
60
- preds = model("I loved the spiderman movie!")
61
  ```
62
 
63
  <!--
@@ -86,6 +98,39 @@ preds = model("I loved the spiderman movie!")
86
 
87
  ## Training Details
88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  ### Framework Versions
90
  - Python: 3.11.13
91
  - SetFit: 1.1.2
 
4
  - sentence-transformers
5
  - text-classification
6
  - generated_from_setfit_trainer
7
+ widget:
8
+ - text: This sentence is positive
9
+ - text: This sentence is positive
10
+ - text: This sentence is negative
11
+ - text: This sentence is positive
12
+ - text: This sentence is negative
13
  metrics:
14
  - accuracy
15
  pipeline_tag: text-classification
16
  library_name: setfit
17
  inference: true
18
+ base_model: TaylorAI/bge-micro-v2
19
  ---
20
 
21
+ # SetFit with TaylorAI/bge-micro-v2
22
 
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
 
25
  The model has been trained using an efficient few-shot learning technique that involves:
26
 
 
31
 
32
  ### Model Description
33
  - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2)
35
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
  - **Maximum Sequence Length:** 512 tokens
37
  - **Number of Classes:** 2 classes
 
45
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
 
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------|:----------------------------------------------------------------------------------------------------------------------|
51
+ | 0 | <ul><li>'This sentence is positive'</li><li>'This sentence is positive'</li><li>'This sentence is positive'</li></ul> |
52
+ | 1 | <ul><li>'This sentence is negative'</li><li>'This sentence is negative'</li><li>'This sentence is negative'</li></ul> |
53
+
54
  ## Uses
55
 
56
  ### Direct Use for Inference
 
69
  # Download from the 🤗 Hub
70
  model = SetFitModel.from_pretrained("mahitha-t/text_classification_model")
71
  # Run inference
72
+ preds = model("This sentence is positive")
73
  ```
74
 
75
  <!--
 
98
 
99
  ## Training Details
100
 
101
+ ### Training Set Metrics
102
+ | Training set | Min | Median | Max |
103
+ |:-------------|:----|:-------|:----|
104
+ | Word count | 4 | 4.0 | 4 |
105
+
106
+ | Label | Training Sample Count |
107
+ |:------|:----------------------|
108
+ | 0 | 8 |
109
+ | 1 | 8 |
110
+
111
+ ### Training Hyperparameters
112
+ - batch_size: (16, 2)
113
+ - num_epochs: (1, 16)
114
+ - max_steps: -1
115
+ - sampling_strategy: oversampling
116
+ - body_learning_rate: (2e-05, 1e-05)
117
+ - head_learning_rate: 0.01
118
+ - loss: CosineSimilarityLoss
119
+ - distance_metric: cosine_distance
120
+ - margin: 0.25
121
+ - end_to_end: False
122
+ - use_amp: False
123
+ - warmup_proportion: 0.1
124
+ - l2_weight: 0.01
125
+ - seed: 42
126
+ - eval_max_steps: -1
127
+ - load_best_model_at_end: False
128
+
129
+ ### Training Results
130
+ | Epoch | Step | Training Loss | Validation Loss |
131
+ |:------:|:----:|:-------------:|:---------------:|
132
+ | 0.1111 | 1 | 0.1561 | - |
133
+
134
  ### Framework Versions
135
  - Python: 3.11.13
136
  - SetFit: 1.1.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:92a95a693f2200c471a1932587089130f4b8dff5fb65750692e95890410151cf
3
  size 69565312
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c5894dcbec50c5371dfcdbb55bfbd2a35e84842458cadc4f3a65b4c262eca3
3
  size 69565312
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6baec4859141d68412e257dd125d5bce359fd2927ec7d76ef28b7999aa634768
3
  size 3935
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0348b82a079794b8bfae5d936e9db047b21d45ce0a80c81cac7990af255f4d5b
3
  size 3935