manuth's picture
End of training
0cca624 verified
metadata
library_name: transformers
license: mit
base_model: Vira21/Whisper-Base-KhmerV2
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: whisper-base-khmer-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: km_kh
          split: test
          args: km_kh
        metrics:
          - name: Wer
            type: wer
            value: 0.609560191987462

whisper-base-khmer-v2

This model is a fine-tuned version of Vira21/Whisper-Base-KhmerV2 on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2003
  • Wer: 0.6096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1065 0.3171 50 0.2027 0.6121
0.0973 0.6342 100 0.2014 0.6138
0.0933 0.9512 150 0.2003 0.6096
0.0816 1.2727 200 0.2020 0.6125
0.0767 1.5898 250 0.2025 0.6131
0.0782 1.9069 300 0.2027 0.6096
0.0728 2.2283 350 0.2044 0.6097
0.0692 2.5454 400 0.2043 0.6131
0.0685 2.8625 450 0.2043 0.6125

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0