metadata
library_name: transformers
tags:
- lora
- sequence-classification
- end-of-utterance
- multilingual
- english
- spanish
license: apache-2.0
datasets:
- marc-es/orga-dynamic-dataset
model_type: llama
language:
- es
- en
base_model:
- HuggingFaceTB/SmolLM2-135M-Instruct
metrics:
- accuracy
Orga Dynamic (1) — Bilingual End-of-Utterance Classifier
Orga Dynamic (1) es un adaptador LoRA (Low-Rank Adaptation) entrenado para detectar automáticamente el fin de turno (End of Utterance, EOU) en conversaciones.
- Base model:
HuggingFaceTB/SmolLM2-135M-Instruct
- Method: LoRA-r16 / α32 sobre
q_proj
,k_proj
,v_proj
,o_proj
- Training data: 4 000 intervenciones
- Metrics (test 20 %)
Metric | EN + ES |
---|---|
Accuracy | 0.951 |
F1 | 0.948 |
Model Details
Languages | English (en), Spanish (es) |
Labels | 0 = NO_EOU , 1 = EOU |
Precision | fp16 (LoRA weights ≈ 5 MB) |
License | Apache 2.0 |
Author | @marc-es |
Quick Start
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel
base = AutoModelForSequenceClassification.from_pretrained(
"HuggingFaceTB/SmolLM2-135M-Instruct", num_labels=2)
model = PeftModel.from_pretrained(base, "marc-es/orga-dynamic-1")
tok = AutoTokenizer.from_pretrained("marc-es/orga-dynamic-1")
def is_end(text):
out = model(**tok(text, return_tensors="pt"))[0]
return out.argmax(-1).item() == 1 # True = EOU